Diversity and Evolution of Mineralized Skeletal Tissues in Chondrichthyans

2021 ◽  
Vol 9 ◽  
Author(s):  
Fidji Berio ◽  
Morgane Broyon ◽  
Sébastien Enault ◽  
Nelly Pirot ◽  
Faviel A. López-Romero ◽  
...  

The diversity of skeletal tissues in extant vertebrates includes mineralized and unmineralized structures made of bone, cartilage, or tissues of intermediate nature. This variability, together with the diverse nature of skeletal tissues in fossil species question the origin of skeletonization in early vertebrates. In particular, the study of skeletal tissues in cartilaginous fishes is currently mostly restrained to tessellated cartilage, a derived form of mineralized cartilage that evolved at the origin of this group. In this work, we describe the architectural and histological diversity of neural arch mineralization in cartilaginous fishes. The observed variations in the architecture include tessellated cartilage, with or without more massive sites of mineralization, and continuously mineralized neural arches devoid of tesserae. The histology of these various architectures always includes globular mineralization that takes place in the cartilaginous matrix. In many instances, the mineralized structures also include a fibrous component that seems to emerge from the perichondrium and they may display intermediate features, ranging from partly cartilaginous to mostly fibrous matrix, similar to fibrocartilage. Among these perichondrial mineralized tissues is also found, in few species, a lamellar arrangement of the mineralized extracellular matrix. The evolution of the mineralized tissues in cartilaginous fishes is discussed in light of current knowledge of their phylogenetic relationships.

1993 ◽  
Vol 4 (2) ◽  
pp. 197-250 ◽  
Author(s):  
H. Birkedal-Hansen ◽  
W.G.I. Moore ◽  
M.K. Bodden ◽  
L.J. Windsor ◽  
B. Birkedal-Hansen ◽  
...  

Matrix metalloproteinases (MMPs) are a family of nine or more highly homologous Zn++endopeptidases that collectively cleave most if not all of the constituents of the extracellular matrix. The present review discusses in detail the primary structures and the overlapping yet distinct substrate specificities of MMPs as well as the mode of activation of the unique MMP precursors. The regulation of MMP activity at the transcriptional level and at the extracellular level (precursor activation, inhibition of activated, mature enzymes) is also discussed. A final segment of the review details the current knowledge of the involvement of MMP in specific developmental or pathological conditions, including human periodontal diseases.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Dehuai Luo ◽  
Yanping Li ◽  
Qingyuan Zhao ◽  
Lianpeng Zhao ◽  
Arne Ludwig ◽  
...  

Order Acipenseriformes contains 27 extant species distributed across the northern hemisphere, including so-called “living fossil” species of garfish and sturgeons. Previous studies have focused on their mitochondrial genetics and have rarely used nuclear genetic data, leaving questions as to their phylogenetic relationships. This study aimed to utilize a bioinformatics approach to screen for candidate single-copy nuclear genes, using transcriptomic data from sturgeon species and genomic data from the spotted gar, Lepisosteus oculatus. We utilized nested polymerase chain reaction (PCR) and degenerate primers to identify nuclear protein-coding (NPC) gene markers to determine phylogenetic relationships among the Acipenseriformes. We identified 193 nuclear single-copy genes, selected from 1850 candidate genes with at least one exon larger than 700 bp. Forty-three of these genes were used for primer design and development of 30 NPC markers, which were sequenced for at least 14 Acipenseriformes species. Twenty-seven NPC markers were found completely in 16 species. Gene trees according to Bayesian inference (BI) and maximum likelihood (ML) were calculated based on the 30 NPC markers (20,946 bp total). Both gene and species trees produced very similar topologies. A molecular clock model estimated the divergence time between sturgeon and paddlefish at 204.1 Mya, approximately 10% later than previous estimates based on cytochrome b data (184.4 Mya). The successful development and application of NPC markers provides a new perspective and insight for the phylogenetic relationships of Acipenseriformes. Furthermore, the newly developed nuclear markers may be useful in further studies on the conservation, evolution, and genomic biology of this group.


1991 ◽  
Vol 2 (3) ◽  
pp. 369-387 ◽  
Author(s):  
Adele L. Boskey

The extracellular matrix of dentin consists of mineral (hydroxyapatite), collagen, and several noncollagenous matrix proteins. These noncollagenous matrix proteins may be mediators of cell-matrix interactions, matrix maturation, and mineralization. This review describes the current knowledge of the chemistry of mineral crystal formation in dentin with special emphasis on the roles of the dentin matrix proteins. The functions of some of these matrix proteins in the mineralization process have been deduced based on in vitro studies. Functions for others have been postulated based on analogy with some of the bone matrix proteins. Evidence suggests that several of these matrix proteins may have multiple effects on nucleation, crystal growth, and orientation of dentin hydroxyapatite.


Author(s):  
Hanifeh Khayyeri ◽  
Patrick J. Prendergast

The ability of tissues to adapt to the mechanical environment is a remarkable feature of the skeleton. Although the mechano-regulation process is very complex, several mechano-regulation theories for musculo-skeletal tissues have successfully predicted the tissue differentiation and remodelling process in various scenarios with reasonable accuracy (1,2); but how did mechano-regulated bone differentiation emerge in evolution? Early vertebrates, like cartilaginous fishes, could modulate their tissues to the mechanical environment and it is likely that evolution worked with the regulatory genes for skeletal tissues, rather than changes in structural genes, i.e. adapting skeletal tissues to the local conditions rather than involving major changes in cells or tissue types (3).


1996 ◽  
Vol 270 (1) ◽  
pp. L3-L27 ◽  
Author(s):  
S. E. Dunsmore ◽  
D. E. Rannels

The lung and other organs are comprised of both cellular and extracellular compartments. Interaction of these components modulates physiological function at the organ, cellular, and subcellular levels. Extracellular components in the gas-exchange region of the lung include both noncellular interstitium and basement membranes. Connective tissue elements of the interstitium in part determine ventilatory function by contributions to tissue compliance and to resistance of the diffusion barrier. The basement membrane underlies cells of both the alveolar epithelium and the capillary endothelium; basement membrane components exert biological effects on adjacent cells through receptor-mediated interactions. This review emphasizes current knowledge concerning the composition and biological activity of extracellular matrix in the alveolar region of the lung. Matrix synthesis and turnover are also considered. Directions for future research are suggested in the context of current knowledge of the lung and other model systems.


Zootaxa ◽  
2018 ◽  
Vol 4494 (1) ◽  
pp. 1 ◽  
Author(s):  
MARIANA F. LINDNER ◽  
AUGUSTO FERRARI ◽  
LAURENCE A. MOUND ◽  
ADRIANO CAVALLERI

The genus Holopothrips represents the main Neotropical group of thrips associated with plant galls, and several of the 36 currently described species are known to induce or invade galls of other organisms. The existence of several Holopothrips specimens in collections that do not belong to any of the already described species, allied to the absence of basic biological information for several species, such as host plants and habit, shows that the current knowledge on the genus is severely lacking. Here we start addressing these problems, by describing 24 new species: H. acrioris, H. atlanticus, H. bicolor, H. brevicapitatum, H. cardosoi, H. curiosus, H. flavisetis, H. graziae, H. inconspicuus, H. infestans, H. irregularis, H. johanseni, H. kaminskii, H. longihamus, H. longisetus, H. magnus, H. maiae, H. nigrisetis, H. nigrum, H. punctatus, H. reticulatus, H. singularis, H. spermathecus, H. varicolor. This study also includes information on galls for several species; an updated and illustrated key to species; and comments on the morphological diversity of the group. With that, we hope to lay the taxonomic and morphological bases for future studies in this group, focusing on its diversity, ecology and phylogenetic relationships. 


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Chen ◽  
J. Steven Alexander ◽  
A. Wayne Orr

In the 1970s, the late Judah Folkman postulated that tumors grow proportionately to their blood supply and that tumor angiogenesis removed this limitation promoting growth and metastasis. Work over the past 40 years, varying from molecular examination to clinical trials, verified this hypothesis and identified a host of therapeutic targets to limit tumor angiogenesis, including the integrin family of extracellular matrix receptors. However, the propensity for some tumors to spread through lymphatics suggests that lymphangiogenesis plays a similarly important role. Lymphangiogenesis inhibitors reduce lymph node metastasis, the leading indicator of poor prognosis, whereas inducing lymphangiogenesis promotes lymph node metastasis even in cancers not prone to lymphatic dissemination. Recent works highlight a role for integrins in lymphangiogenesis and suggest that integrin inhibitors may serve as therapeutic targets to limit lymphangiogenesis and lymph node metastasis. This review discusses the current literature on integrin-matrix interactions in lymphatic vessel development and lymphangiogenesis and highlights our current knowledge on how specific integrins regulate tumor lymphangiogenesis.


Zootaxa ◽  
2017 ◽  
Vol 4232 (4) ◽  
pp. 535 ◽  
Author(s):  
DANIEL BURCKHARDT ◽  
DALVA L. QUEIROZ

The Neotropical psyllid genus Tainarys Brèthes, 1920 is revised to include 14 extant and one fossil species from Dominican amber. Eight species are described as new, viz. Tainarys aroeira sp. nov., T. atra sp. nov., T. hapla sp. nov., T. myracrodrui sp. nov., T. nigricornis sp. nov., T. didyma sp. nov. and T. orientalis sp. nov. from Brazil, the last two also from Uruguay, as well as T. lozadai sp. nov. from Peru. The fifth instar immatures are described for nine species. †Vicinilura Klimaszewski, 1996, erected for the fossil †V. reposta Klimaszewski, 1996 and previously synonymised with Leurolophus Tuthill, 1942, is synonymised here (syn. nov.) with Tainarys and †V. reposta is transferred to become †Tainarys reposta (Klimaszewski), comb. nov. The descriptions are supplemented by illustrations and keys for the identification of adults and immatures. Phylogenetic relationships between species are investigated with a cladistic analysis using 22 adult and six immature morphological characters. The analysis resulted in a single most parsimonious, fully resolved tree. The fossil species is nested within the genus rather than being the sister taxon of the remainder of species. The extant species are restricted to the subtropical and temperate parts of South America. Three pairs of sister clades display an east‒west South American and one a midwest‒southern Brazilian geographical vicariance. Host plants are confirmed for nine and likely for another four species. They are Astronium, Haplorhus, Myracrodruon, Schinopsis and Schinus (Anacardiaceae). All Tainarys species appear to be oligophagous inducing irregular leaf curls on their hosts. 


2021 ◽  
Vol 72 (1) ◽  
pp. 7-13
Author(s):  
Zsuzsa Bajtay

AbstractIntegrins are essential membrane proteins that provide a tightly regulated link between the extracellular matrix and the intracellular cytoskeletal network. These cell surface proteins are composed of a non-covalently bound α chain and β chain. The leukocyte-specific complement receptor 3 (CR3, αMβ2, CD11b/CD18) and complement receptor 4 (CR4, αXβ2, CD11c/CD18) belong to the family of β2-integrins. These receptors bind multiple ligands like iC3b, ICAMs, fibrinogen or LPS, thus allowing them to partake in phagocytosis, cellular adhesion, extracellular matrix rearrangement and migration. CR3 and CR4 were generally expected to mediate identical functions due to their structural homology, overlapping ligand specificity and parallel expression on human phagocytes. Despite their similarities, the expression level and function of these receptors differ in a cell-type-specific manner, both under physiological and inflammatory conditions.We investigated comprehensively the individual role of CR3 and CR4 in various functions of human phagocytes, and we proved that there is a “division of labour” between these two receptors. In this review, I will summarize our current knowledge about this area.


Sign in / Sign up

Export Citation Format

Share Document