scholarly journals Cross-Ecosystem Linkages: Transfer of Polyunsaturated Fatty Acids From Streams to Riparian Spiders via Emergent Insects

2021 ◽  
Vol 9 ◽  
Author(s):  
Carmen Kowarik ◽  
Dominik Martin-Creuzburg ◽  
Christopher T. Robinson

Polyunsaturated fatty acids (PUFAs) are essential resources unequally distributed throughout landscapes. Certain PUFAs, such as eicosapentaenoic acid (EPA), are common in aquatic but scarce in terrestrial ecosystems. In environments with low PUFA availability, meeting nutritional needs requires either adaptations in metabolism to PUFA-poor resources or selective foraging for PUFA-rich resources. Amphibiotic organisms that emerge from aquatic ecosystems represent important resources that can be exploited by predators in adjacent terrestrial habitats. Here, we traced PUFA transfer from streams to terrestrial ecosystems, considering benthic algae as the initial PUFA source, through emergent aquatic insects to riparian spiders. We combined carbon stable isotope and fatty acid analyses to follow food web linkages across the ecosystem boundary and investigated the influence of spider lifestyle (web building vs. ground dwelling), season, and ecosystem degradation on PUFA relations. Our data revealed that riparian spiders consumed considerable amounts of aquatic-derived resources. EPA represented on average 15 % of the total fatty acids in riparian spiders. Season had a strong influence on spider PUFA profiles, with highest EPA contents in spring. Isotope data revealed that web-building spiders contain more aquatic-derived carbon than ground dwelling spiders in spring, although both spider types had similarly high EPA levels. Comparing a natural with an anthropogenically degraded fluvial system revealed higher stearidonic acid (SDA) contents and Σω3/Σω6 ratios in spiders collected along the more natural river in spring but no difference in spider EPA content between systems. PUFA profiles of riparian spiders where distinct from other terrestrial organism and more closely resembled that of emergent aquatic insects (higher Σω3/Σω6 ratio). We show here that the extent to which riparian spiders draw on aquatic PUFA subsidies can vary seasonally and depends on the spider’s lifestyle, highlighting the complexity of aquatic-terrestrial linkages.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yutaka Tashiro

Purpose This study aimed to analyze the lipid content and fatty acid composition in the liver and muscle of a porcupinefish species inhabiting waters around the Ryukyu Islands to investigate their potential as a source of long-chain n-3 polyunsaturated fatty acids (LC-PUFAs). Design/methodology/approach Porcupinefish were collected along the Okinawa Island coast. The composition of fatty acids and cholesterol in both liver and muscle were analyzed using a gas chromatograph mass spectrometer. Findings The liver of Okinawan long-spine porcupinefish was rich in lipids whose content correlated to the proportion of liver/body weight. Fatty acid compositions in their liver and muscles were similar to each other. LC-PUFAs occupied 44% of total fatty acids, with docosahexaenoic acid (DHA) being the dominant (42%), whereas eicosapentaenoic acid occupied 2.4%. The liver contained 1,690 mg of cholesterol and 14.8 g of DHA per 100 g, whose proportion decreased in summer compared to other seasons (p = 0.036). Originality/value The liver of Okinawan long-spine porcupinefish, which has not yet been commercially used although its non-toxicity is claimed, can be an excellent source of LC-PUFAs, especially DHA, accentuating its potential in food supplements’ production.


Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter discusses fatty acids, the building blocks of lipids, which represent a significant fraction of the total lipid pool in aquatic organisms. It explores how chain length and levels of unsaturation (number of double bonds) have been shown to be correlated to decomposition, indicating a pre- and postdepositional selective loss of short-chain and polyunsaturated fatty acids. In contrast, saturated fatty acids are more stable and typically increase in relative proportion to total fatty acids with increasing sediment depth. Polyunsaturated fatty acids (PUFAs) are predominantly used as proxies for the presence of “fresh” algal sources, although some PUFAs also occur in vascular plants and deep-sea bacteria. Thus, these biomarkers represent a very diverse group of compounds present in aquatic systems. The numerous applications of fatty acid biomarkers to identifying the sources of organic matter in lakes, rivers, estuaries, and marine ecosystems are discussed.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 151 ◽  
Author(s):  
Thi Linh Nham Tran ◽  
Ana F. Miranda ◽  
Adarsha Gupta ◽  
Munish Puri ◽  
Andrew S. Ball ◽  
...  

Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 129 ◽  
Author(s):  
Sydney Moyo

Aquatic insects provide an energy subsidy to riparian food webs. However, most empirical studies have considered the role of subsidies only in terms of magnitude (using biomass measurements) and quality (using physiologically important fatty acids), negating an aspect of subsidies that may affect their impact on recipient food webs: the potential of insects to transport contaminants (e.g., mercury) to terrestrial ecosystems. To this end, I used empirical data to estimate the magnitude of nutrients (using physiologically important fatty acids as a proxy) and contaminants (total mercury (Hg) and methylmercury (MeHg)) exported by insects from rivers and lacustrine systems in each continent. The results reveal that North American rivers may export more physiologically important fatty acids per unit area (93.0 ± 32.6 Kg Km−2 year−1) than other continents. Owing to the amount of variation in Hg and MeHg, there were no significant differences in MeHg and Hg among continents in lakes (Hg: 1.5 × 10−4 to 1.0 × 10−3 Kg Km−2 year−1; MeHg: 7.7 × 10−5 to 1.0 × 10−4 Kg Km−2 year−1) and rivers (Hg: 3.2 × 10−4 to 1.1 × 10−3 Kg Km−2 year−1; MeHg: 3.3 × 10−4 to 8.9 × 10−4 Kg Km−2 year−1), with rivers exporting significantly larger quantities of mercury across all continents than lakes. Globally, insect export of physiologically important fatty acids by insect was estimated to be ~43.9 × 106 Kg year−1 while MeHg was ~649.6 Kg year−1. The calculated estimates add to the growing body of literature, which suggests that emerging aquatic insects are important in supplying essential nutrients to terrestrial consumers; however, with the increase of pollutants in freshwater systems, emergent aquatic insect may also be sentinels of organic contaminants to terrestrial consumers.


1998 ◽  
Vol 80 (3) ◽  
pp. 273-280 ◽  
Author(s):  
J. A. Rooke ◽  
I. M. Bland ◽  
S. A. Edwards

To investigate whether long-chain n-3 polyunsaturated fatty acids could cross the porcine placenta in late pregnancy and alter neonatal piglet tissue composition, multiparous sows (seven per diet) were fed on diets containing a supplement (30 g/kg) of either soyabean oil or tuna oil for the last 21 d of pregnancy and the first 7 d of lactation. The proportions of all fatty acids, except 18:1n-7, differed between diets: in particular, the tuna-oil-containing diet supplied more 22:6n-3 and less 18:2n-6 fatty acids than the soyabean-oil-containing diet. The proportions of n-3 fatty acids, particularly 22:6n-3 (g/100 g total fatty acids) in sow plasma, colostrum and milk were increased and the proportion of 18:2n-6 was decreased by feeding tuna oil. Piglet tissue n-3 fatty acid proportions (particularly 22:6n-3), obtained shortly after birth, were increased in piglets born to tuna-oil-fed sows compared with progeny of soyabean-oil-fed sows. The increase in the proportion of n-3 fatty acids (g/100 g total fatty acids) in piglet tissues as a result of tuna-oil feeding, compared with soyabean-oil-feeding, was in the order plasma>liver>erythrocytes>spleen>brain>retina. Piglets born to tuna-oil-fed sows had a lower viability score at birth than the progeny of soyabean-oil-fed sows. The proportions of long-chain n-3 fatty acid in tissues of new-born piglets were increased by feeding tuna oil to the sow in late pregnancy; however no improvements in piglet viability were observed.


Reproduction ◽  
2010 ◽  
Vol 140 (6) ◽  
pp. 943-951 ◽  
Author(s):  
S E Kirkup ◽  
Z Cheng ◽  
M Elmes ◽  
D C Wathes ◽  
D R E Abayasekara

Diets or supplements high in n-3 and n-6 polyunsaturated fatty acids (PUFAs) have been shown to influence the timing of parturition. PUFAs are substrates for prostaglandin (PG) synthesis, and PGs play central roles in parturition. Hence, the effects of altering PUFA composition may be mediated through alterations in the type and relative quantities of PGs synthesised. Therefore, we have investigated the effects of a range of n-3 and n-6 PUFAsin vitroon PG synthesis by amnion cells of late gestation ewes. The n-6 PUFA, arachidonic acid (20:4, n-6), increased synthesis of two-series PGs. Degree of stimulation induced by the n-6 PUFAs was dependent on the position of the PUFA in the PG synthetic pathway, i.e. PG production of the two-series (principally prostaglandin E2:PGE2) increased progressively with longer chain PUFAs. Effects of n-3 PUFAs on output of PGE2were more modest and variable. The two shorter chain n-3 PUFAs, α-linolenic acid (18:3, n-3) and stearidonic acid (18:4, n-3), induced a small but significant increase in PGE2output, while the longest chain n-3 PUFA docosahexaenoic acid (22:6, n-3) inhibited PGE2synthesis. Dihomo-γ-linolenic acid (20:3, n-6), the PUFA substrate for synthesis of one-series PGs, induced an increase in PGE1generation and a decrease in PGE2and PGE3outputs. Hence, we have demonstrated that PUFA supplementation of ovine amnion cellsin vitroaffects the type and quantity of PGs synthesised.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1627
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Reddampalli Venkataramareddy Sreedhar ◽  
Kamatham Akhilender Naidu ◽  
Xiaomin Shang ◽  
...  

The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Celia Montaner ◽  
Raquel Zufiaurre ◽  
María Movila ◽  
Cristina Mallor

Borage (Borago officinalis L.) is a traditional vegetable grown and consumed in some Spanish regions. The objective of this study was to determine the variability and evolution of fatty acid composition in a borage germplasm collection formed by wild types, breeding lines, commercial varieties, and landraces. Fatty acids were analysed in petioles, the commonly edible part of the leaves, and the leaf blades, the by-product of the borage industry, in two growth stages: at the optimal harvest period (120 days after sowing) and at the end of the harvest period (150 days after sowing). The results showed that for each of the eight fatty acids identified, there were significant differences among the twelve borage genotypes depending on the developmental plant stage at sampling date and the part of the leaf analysed, the interaction effect also being statistically significant. The main polyunsaturated fatty acids identified were: linoleic acid (18:2 n6, LA), α-linolenic acid (18:3 n3, ALA), γ-linolenic acid (18:3 n6, GLA), and stearidonic acid (SDA, 18:4, n-3), account for approximately 70% of polyunsaturated fatty acids. Blue-flowered genotypes differ from white-flowered genotypes by their high content of ALA and SDA, which can be exploited in borage breeding programs. Petioles from young plants present higher n6 fatty acids, while older plants produce a great amount of n3 fatty acids. Besides, the higher content of ALA in the leaf blades gives them a good dietary potential. All these fatty acids, with multiple health benefits, support the nutraceutical interest of borage leaves (both petioles and leaf blades) for human consumption, animal feeding, medicine, and pharmacy.


Sign in / Sign up

Export Citation Format

Share Document