scholarly journals Patterns of Benthic Communities in Arctic Fjords (Novaya Zemlya Archipelago, Kara Sea): Resilience vs. Fragility

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexey Udalov ◽  
Margarita Chikina ◽  
Alexandra Chava ◽  
Andrey Vedenin ◽  
Sergey Shchuka ◽  
...  

Despite a large number of studies, a detailed overall picture of benthic communities zonation in the Arctic fjords is currently lacking. Our study aimed to find out whether there is a universal model for the distribution of benthic communities based on the structural features of the fjords. We examined benthic macrofaunal communities in fjords with various environmental settings on the eastern coast of Novaya Zemlya Archipelago, Kara Sea. The material was collected during five cruises undertaken from 2013 to 2016. A total of 50 stations located in the five fjords were taken. In all five fjords, macrofauna had a similar composition assembled from a regional species pool, with a predominance of species tolerant to glacial sedimentation and fluctuations in temperature and salinity. Benthic communities changed consistently along the axis of the bay from the outer slope to the inner parts. Biodiversity and quantitative characteristics of the macrofauna decreased along the environmental gradient related to terrigenous and glacial runoff, consistent with patterns reported in other studies of Arctic glacial fjords. The most impoverished communities were dominated by bivalve Portlandia arctica and isopod Saduria sabini. At the same time, fjord walls and sills, characterized by low sedimentation rates, strong currents and the presence of ice-rafted debris, were inhabited by patchy distributed benthic communities dominated by species confined to hard substrates. In general, the distribution of communities corresponded to five zones: depleted inner periglacial areas, the upper subtidal belt with stony substrates, deep inner semi-isolated basin, outer non-isolated basins and upper slope transitioning to lower slope. Our study can provide a reference point for monitoring changes in fjord ecosystems in response to climate change and the potential impact of human activities.

2021 ◽  
Author(s):  
Valentina Sergeeva ◽  
Olga Vorobieva

<p>Pronounced changes in the climate system that lead to a significant reduction in sea ice cover and active glacier melting provoke the great interest in ecosystem studies of archipelago bays in the high Arctic. In addition to increasing the duration of the open water period, the glacier melting increases the fresh water discharge from the archipelagos and thereby affects the coastal ecosystems of the Arctic region. There is practically no information about the ecosystems of the archipelago bays of the seas of the Russian Arctic due to the inaccessibility. Within the framework of the program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, modern comprehensive studies of ecosystems of Novaya Zemlya bays, including phytoplankton (as primary producer of organic matter) were carried out. The most frequent observations were conducted in Blagopoluchiya Bay (North Island of Novaya Zemlya Archipelago), which has several coastal runoffs of glacial origin flow.</p><p>We found that despite the constant enrichment with allochthonous suspended matter and nutrients with runoff from Novaya Zemlya to the Blagopoluchiya Bay there was no increase in phytoplankton production during the summer open water period (Borisenko et al. Thesis EGU21-9528). On the contrary, the quantitative characteristics of phytoplankton in euphotic layer were extremely low: 0.2-0.7 mkgC/l and 0.03 - 0.15 mkgChl/l. Obviously the inclusion of allochthonous nutrients in local production cycles over the sea part of the bay was difficult.</p><p>To clarify the reasons of such low phytoplankton productivity against the background of the enrichment with nutrients of ​​Blagopoluchiya Bay, multifactorial experiments were carried out on the monoculture of the cosmopolitan diatom <em>Thalassiosira nordenskioeldii</em> Cleve, 1873, which is one of the dominant species in the Novaya Zemlya bays. Algae culture was isolated from the phytoplankton community of the Kara Sea and adapted to a salinity of 31 psu, typical for Novaya Zemlya bays. In addition to routine cell counting under microscope we used PAM-fluorometry to control the growth characteristics of algae that makes it possible to observe the photosynthetic activity of algae.</p><p>It was shown that the functioning of algae is greatly influenced by a significant gradients in salinity. When fresh runoff from Novaya Zemlya is mixed with the seawater of the bay, marine planktonic algae experience significant osmostress and immediately settle down and die off. With a slight dilution (up to 29-30 psu) of sea water by freshwater from the archipelago, the algae functioned well and doubled their biomass for 2-3 days. At the same time, we found that the algae were well adapted to a significant range of illumination: 40-200 µE, which apparently allows them to maintain high level of photosynthetic activity under the changing arctic illumination during the Arctic summer at high latitudes.</p><p>This study was performed within the framework of the state assignment of IO RAS, (topic no. 0149-2019-0008) and supported by the Russian Foundation of Basic Research (projects no. 18–05–60069Arctic and 19-04-00322 А).</p>


2021 ◽  
Author(s):  
Gennadii Borisenko ◽  
Alexander Polukhin ◽  
Valentina Sergeeva

<p>In the frames of the scientific program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, comprehensive studies of the bays of the Novaya Zemlya archipelago (NZA) were carried out. There is very little information in the scientific literature on the dynamics and hydrochemical structure of the waters of the bays. Our investigations have revealed that the concentration of nutrients (first of all, nitrates and silicate) in the bays of NZA was higher than in the surrounding water area of ​​the Kara Sea. The most well studied and open for investigations is the Blagopoluchiya Bay in the northern island of NZA. Blagopoluchiya Bay is a fjord-type bay with several streams of the glacier origin.</p><p>The concentrations of nutrients (N, P, Si, C) in the streams were observed in August-September (0-1.53 µM of PO<sub>4</sub><sup>3-</sup>, 6.4-50.2 µM of SiO<sub>3</sub><sup>2-</sup>, 0.6-11.2 µM of NO<sub>2</sub><sup>-</sup>+NO<sub>3</sub><sup>-</sup>, 732-4815 µM of DIC). The observed content of nutrients in the waters of the bay was on average 2 times lower, but not lower than the level limiting the development of phytoplankton.</p><p>We suppose that high concentrations of nutrients in NZA bays in August-September were supported by increasing glacial runoff from NZA during the summer open water period and the removal of products of degradation of shore rocks with it. Despite the constant enrichment of nutrients, the concentration of phytoplankton in Blagopoluchiya Bay was extremely low (0.2-0.7 mkgC/l) in comparison with the adjacent marine part of the Kara Sea in all years of research.  Perhaps it was due to osmostress of planktonic algae during desalination of the bay by the NZA runoff.</p><p>This work was supported by the State Agreement of The Ministry of Science and Education of Russian Federation (theme №0128-2019-0008); Russian Foundation for Basic Research project 18-05-60069 (processing hydrochemistry data); Russian Scientific Foundation project 19-17-00196 (data obtaining); by the Grant of the President of the Russian Federation MK-860.2020.5 (processing carbonate chemistry data).</p>


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Andrey Medvedev ◽  
Natalia Alekseenko ◽  
Maria Arsentyeva

<p><strong>Abstract.</strong> The Arctic region is currently at the next stage of increased interest not only from the Arctic States, but also from the entire world community. The main pollutants in the region are oil and gas products, heavy metals, chemical and radioactive contamination. The Arctic region of the Russian Federation has experienced a strong anthropogenic impact of radionuclides due to the use of nuclear energy. The main source of pollution is nuclear testing. About 132 tests were conducted on Novaya Zemlya, including 87 atmospheric, 3 underwater and 42 underground tests. Another source of radioactive contamination is the operation of the naval and civil nuclear fleet, as well as nuclear power plants (on the Kola Peninsula and in Bilibino). Until 1963, most of the tests were carried out in the atmosphere and under water, but after the signing of the Moscow Treaty on August 5, 1963, which prohibits the testing of nuclear weapons in three environments (under water, in the atmosphere and outer space), all tests were carried out underground, in tunnels and wells.</p><p>The object of research and mapping is the territory of the Novaya Zemlya archipelago and the nuclear test site located on it. On the territory of the nuclear test site constantly there was an assessment of the radioecological situation. The scientific community is interested in the processes taking place on the New Earth. The territory of the archipelago is constantly involved in various Arctic programs aimed at monitoring the level of environmental pollution and reducing the number of sources of pollution.</p><p>The aim of this work is to create multi-time animations of nuclear tests and the results of radionuclide pollution. These animated cartographic images differ not only in their time scales, but also a large set of qualitative and quantitative characteristics that characterize the results of anthropogenic influence.</p><p>As sources for creation of cartographic animations were: field data, remote sensing data (RS), Open sources, marine navigation maps, DEM’s (AsterDem, ArcticDem, GEBCO), meteorological data, thematic maps (including atlases), topographic maps, literary sources. The main part of the information about Novaya Zemlya archipelago was taken from the works of the Arctic marine complex expedition, which are devoted to the nature, history, archeology and culture of the archipelago. To obtain complete information about the explosions and their energy release ranges, additional open sources were used, from which it is possible to learn about the type of explosion, its power and location (geographical coordinates).</p><p>Dynamic geo-imagery was developed and established by the following method: study of object mapping and the collection of primary spatial data – creation script dynamic geo-imagery – the creation of a geodatabase of research – the creation of the thematic maps and layout of geo-imagery in the graphic editor – create animations with different time scales.</p><p>During the creation of cartographic animations based on the collected data, a multi-time multi-scale cartographic animation was developed, which allowed using the original graphical solution to visualize three interconnected time scales, which allowed to visualize the processes of infiltration and propagation of radioactive inert gases.</p>


2021 ◽  
Vol 40 ◽  
pp. 133-139
Author(s):  
Vitaly M. Spitsyn ◽  
Alexander V. Kondakov ◽  
Elsa Froufe ◽  
Mikhail Y. Gofarov ◽  
André Gomes-Dos-Santos ◽  
...  

In this study, we present an announcement of Novaya Zemlya Collared Lemming Dicrostonyx torquatus ungulatus (von Baer, 1841) complete mitogenome. This rodent was described historically as an Arctic Collared Lemming subspecies endemic to Novaya Zemlya (Arctic Russia) but its taxonomic status was unclear due to the lack of available molecular data. Based on a comprehensive mitogenomic phylogeny of the Arctic Collared Lemming, we show that this insular population shares a highly divergent mtDNA sequence (total length 16,341 bp). Hence, it should be considered a valid subspecies of the Arctic Collared Lemming. Our findings support the hypothesis that the Novaya Zemlya Archipelago had served as a cryptic polar refugium for cold-tolerant terrestrial and freshwater taxa since the mid-Pleistocene or even earlier.


2019 ◽  
Vol 57 (12) ◽  
pp. 1320-1326
Author(s):  
T. A. Goryachenkova ◽  
A. P. Borisov ◽  
G. Yu. Solov’eva ◽  
E. A. Lavrinovich ◽  
I. E. Kazinskaya ◽  
...  

2019 ◽  
Vol 64 (12) ◽  
pp. 1261-1268
Author(s):  
T. A. Goryachenkova ◽  
A. P. Borisov ◽  
G. Yu. Solov`eva ◽  
E. A. Lavrinovich ◽  
I. E. Kazinskaya ◽  
...  

During the expedition on the Akademik Mstislav Keldysh research vessel in 2016 year it was established that the content of radioactive cesium in the sea water of the Novaya Zemlya archipelago bays and open sea are at a level corresponding to the global fallout (1 Bq /m3). Plutonium content in water is slightly higher .The activity of neptunium in water is an order of magnitude higher than the activity of plutonium (0.761.89 Bq/m3), although its content in global fallout is almost two orders of magnitude lower than the plutonium content. The plutonium content in the bottom sediments of the Kara Sea is 0.23.8 Bq/kg. The content of radioactive cesium is as high as possible in the mouth of the Yenisei River (up to 21 Bq/kg) Analysis of benthic samples showed that the content of radioactive cesium and plutonium in samples taken in the bays of the Novaya Zemlya archipelago is below the detection limit. The neptunium content in the benthos samples is above the detection limit and amounts to 180 Bq/kg wet weight. It was showed that the content of neptunium in benthos is one of the indicators of radioactive contamination of the marine environment.


2019 ◽  
Vol 47 (1) ◽  
pp. 240-247
Author(s):  
J.V. Vorobyova

The article tells about the exhibition of Mikhail Vladimirovich Flint «Immersing into the magic of nature» which took place from March 1 to March 31, 2019 in the Gallery of Сlassical Photography. The exhibition includes about 80 author’s photographs, which depict the amazing landscapes of the Arctic, Novaya Zemlya archipelago, Aral Seas and Plato Usturt, Issyk-Kul Lake and Kirgizstan mountains, Caspian Sea shore and Mangistau Peninsula.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey Miroshnikov ◽  
Mikhail Flint ◽  
Enver Asadulin ◽  
Ramiz Aliev ◽  
Andrei Shiryaev ◽  
...  

AbstractIn recent years, cryoconite has received growing attention from a radioecological point of view, since several studies have shown that this material is extremely efficient in accumulating natural and anthropogenic radionuclides. The Novaya Zemlya Archipelago (Russian Arctic) hosts the second largest glacial system in the Arctic. From 1957 to 1962, numerous atmospheric nuclear explosions were conducted at Novaya Zemlya, but to date, very little is known about the radioecology of its ice cap. Analysis of radionuclides and other chemical elements in cryoconite holes on Nalli Glacier reveals the presence of two main zones at different altitudes that present different radiological features. The first zone is 130–210 m above sea level (a.s.l.), has low radioactivity, high concentrations of lithophile elements and a chalcophile content close to that of upper continental crust clarkes. The second zone (220–370 m a.s.l.) is characterized by high activity levels of radionuclides and “inversion” of geochemical behaviour with lower concentrations of lithophiles and higher chalcophiles. In the upper part of this zone (350–370 m a.s.l.), 137Cs activity reaches the record levels for Arctic cryoconite (5700–8100 Bq/kg). High levels of Sn, Sb, Bi and Ag, significantly exceeding those of upper continental crust clarkes, also appear here. We suggest that a buried layer of contaminated ice that formed during atmospheric nuclear tests serves as a local secondary source of radionuclide contamination. Its melting is responsible for the formation of this zone.


2002 ◽  
Vol 4 ◽  
pp. 149 ◽  
Author(s):  
Andrei N Boltunov ◽  
Stanislav E Belikov

This paper reviews published information on the white whale or beluga (Delphinapterus leucas) inhabiting the Barents, Kara and Laptev seas. Some data obtained during multi-year aerial reconnaissance of sea ice in the Russian Arctic are also included. Ice conditions, considered one of the major factors affecting distribution of belugas, are described. The number of belugas inhabiting the Russian Arctic is unknown. Based on analysis of published and unpublished information we believe that the primary summer habitats of belugas in the Western Russian Arctic lie in the area of Frants-Josef Land, in the Kara Sea and in the western Laptev Sea. Apparently most belugas winter in the Barents Sea. Although it has been suggested that a considerable number of animals winter in the Kara Sea, there is no direct evidence for this. Apparent migrations of animals are regularly observed at several sites: the straits of the Novaya Zemlya Archipelago, the waters north of the archipelago, and Vilkitskiy Strait between the Kara and Laptev seas. Calving and mating take place in summer, and the beluga mother feeds a calf for at least a year. Females mature earlier than males, and about 30% of mature females in a population are barren. Sex ratio is apparently close to 1:1. The diet of the beluga in the region includes fish and crustaceans and shows considerable spatial and temporal variations. However, polar cod (Boreogadus saida) is the main prey most of the year, and whitefish (Coregonidae) contribute in coastal waters in summer. Usually belugas form groups of up to 10 related individuals of different ages, while large aggregations are common during seasonal migrations or in areas with abundant and easily available food. Beluga whaling in Russia has a history of several centuries. The highest catches were taken in the 1950s and 1960s, when about 1,500 animals were caught annually in the Western Russian Arctic. In the 1990s, few belugas were harvested in the Russian Arctic. In 1999 commercial whaling of belugas in Russia was banned. Belugas can be caught only for research, cultural and educational purposes and for the subsistence needs of local people. With the absence of significant whaling, anthropogenic pollution seems to be the major threat for the species.


Author(s):  
Denis V Zakharov ◽  
Igor E Manushin ◽  
Tatiana B Nosova ◽  
Natalya A Strelkova ◽  
Valery A Pavlov

Abstract This article investigates the diet of the snow crab (Chionoecetes opilio) and its feeding intensity in the Barents Sea. Data show that snow crab has a diverse diet that includes almost all types of benthic invertebrates living in the Barents Sea. There are differences between the diets of females and males and of juveniles and adults. Juveniles and females typically occupy shallow areas with communities of bivalve molluscs, while males typically live deeper on slopes and depressions where polychaetes and crustaceans are the most abundant groups. Stomach contents were analysed to determine the species composition and frequency of occurrence of various benthic taxa. Consumption of food was estimated and compared with data from the Russian seas of the Pacific region. The total annual consumption of macrozoobenthos by snow crab was calculated in accordance with its current distribution in the Barents Sea. Snow crab consumes at least 30 000 tonnes of benthos annually, which amounts to 0.1–0.2% of the total macrozoobenthic biomass in the investigated area. The population of snow crab causes the largest impact on the benthic communities in the northeastern part of the Barents Sea and near the south side of the Novaya Zemlya archipelago.


Sign in / Sign up

Export Citation Format

Share Document