microRNAs: a new frontier in kallikrein research

2008 ◽  
Vol 389 (6) ◽  
Author(s):  
George M. Yousef

Abstract microRNAs (miRNAs) are a recently discovered class of small non-coding RNAs that regulate gene expression. Rapidly accumulating evidence has revealed that miRNAs are associated with cancer. The human tissue kalli-krein gene family is the largest contiguous family of proteases in the human genome, containing 15 genes. Many kallikreins have been reported as potential tumor markers. In this review, recent bioinformatics and experimental evidence is presented indicating that kallikreins are potential miRNA targets. The available experimental approaches to investigate these interactions and the potential diagnostic and therapeutic applications are also discussed. miRNAs represent a possible regulatory mechanism for controlling kallikrein expression at the post-transcriptional level. Many miRNAs were predicted to target kallikreins and a single miRNA can target more than one kallikrein. Recent evidence suggests that miRNAs can also exert ‘quantitative’ control of kallikreins by utilizing multiple targeting sites in the kallikrein mRNA. More research is needed to experimentally verify the in silico predictions and to investigate the possible role in tumor initiation and/or progression.

MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ling Lin ◽  
Kebin Hu

: MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


2008 ◽  
Vol 36 (6) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ian G. Cannell ◽  
Yi Wen Kong ◽  
Martin Bushell

miRNAs (microRNAs) are short non-coding RNAs that regulate gene expression post-transcriptionally. They generally bind to the 3′-UTR (untranslated region) of their target mRNAs and repress protein production by destabilizing the mRNA and translational silencing. The exact mechanism of miRNA-mediated translational repression is yet to be fully determined, but recent data from our laboratory have shown that the stage of translation which is inhibited by miRNAs is dependent upon the promoter used for transcribing the target mRNA. This review focuses on understanding how miRNA repression is operating in light of these findings and the questions that still remain.


2005 ◽  
Vol 187 (3) ◽  
pp. 327-332 ◽  
Author(s):  
Trinna L Cuellar ◽  
Michael T McManus

microRNAs (miRNAs) are highly conserved, non-coding RNAs that powerfully regulate gene expression at the post-transcriptional level. These fascinating molecules play essential roles in many biological processes in mammals, including insulin secretion, B-cell development, and adipocyte differentiation. This review provides a general background regarding current knowledge about miRNA biogenesis and the potential contributions of these RNAs to endocrine function.


2017 ◽  
Vol 47 (7) ◽  
Author(s):  
Marcela Wolf ◽  
Eloísa Muehlbauer ◽  
Marlos Gonçalves Sousa

ABSTRACT: The use of biomarkers is an important recent development in veterinary medicine. Biomarkers allow non-invasive quantification of substances with diagnostic and prognostic potential in several diseases. The microRNAs are small, non-coding RNAs that regulate gene expression and are expressed in different forms in many diseases. Reduced or over-expression of microRNAs showed to be part of the pathogenesis of some heart diseases in humans and animals. Diagnostic and therapeutic value of measuring microRNAs in veterinary cardiology is increased because abnormal expression can be managed by the use of antagonists (in the case of overexpression) and mimicking (in the case of underexpression). Thus, this literature review aimed to compile scientific evidence of dysregulation of microRNAs expression in different cardiac diseases being one of the promises in the therapeutic field and diagnosis of veterinary cardiology. MicroRNAs not only have potential as a biomarker but may also help in elucidation of aspects of the pathogenesis of a variety of diseases.


2020 ◽  
Vol 7 (4) ◽  
pp. 133-141 ◽  
Author(s):  
Sourabh Dhingra

Abstract Purpose of Review Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi. Recent Findings Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs. Summary Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjian He ◽  
Xiaoxin Ma

Long non-coding RNAs (LncRNAs) can bind to other proteins or RNAs to regulate gene expression, and its role in tumors has been extensively studied. A common RNA binding protein, UPF1, is also a key factor in a variety of RNA decay pathways. RNA decay pathways serve to control levels of particular RNA molecules. The expression of UPF1 is often dysregulated in tumors, an observation which suggests that UPF1 contributes to development of a variety of tumors. Herein, we review evidence from studies of fourteen lncRNAs interact with UPF1. The interaction between lncRNA and UPFI provide fundamental basis for cell transformation and tumorigenic growth.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2037 ◽  
Author(s):  
Megan E. Filbin ◽  
Jeffrey S. Kieft

Communication between the 5′ and 3′ ends of a eukaryotic messenger RNA (mRNA) or viral genomic RNA is a ubiquitous and important strategy used to regulate gene expression. Although the canonical interaction between initiation factor proteins at the 5′ end of an mRNA and proteins bound to the polyadenylate tail at the 3′ end is well known, in fact there are many other strategies used in diverse ways. These strategies can involve “non-canonical” proteins, RNA structures, and direct RNA-RNA base-pairing between distal elements to achieve 5′-to-3′ communication. Likewise, the communication induced by these interactions influences a variety of processes linked to the use and fate of the RNA that contains them. Recent studies are revealing how dynamic these interactions are, possibly changing in response to cellular conditions or to link various phases of the mRNA’s life, from translation to decay. Thus, 5′-to-3′ communication is about more than just making a closed circle; the RNA elements and associated proteins are key players in controlling gene expression at the post-transcriptional level.


2017 ◽  
Vol 8 (5-6) ◽  
pp. 203-212 ◽  
Author(s):  
Sara Morales ◽  
Mariano Monzo ◽  
Alfons Navarro

AbstractMicroRNAs (miRNAs) are single-stranded RNAs of 18–25 nucleotides that regulate gene expression at the post-transcriptional level. They are involved in many physiological and pathological processes, including cell proliferation, apoptosis, development and carcinogenesis. Because of the central role of miRNAs in the regulation of gene expression, their expression needs to be tightly controlled. Here, we summarize the different mechanisms of epigenetic regulation of miRNAs, with a particular focus on DNA methylation and histone modification.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 132 ◽  
Author(s):  
Erik Martin ◽  
Myong-Hee Sung

Technological advances are continually improving our ability to obtain more accurate views about the inner workings of biological systems. One such rapidly evolving area is single cell biology, and in particular gene expression and its regulation by transcription factors in response to intrinsic and extrinsic factors. Regarding the study of transcription factors, we discuss some of the promises and pitfalls associated with investigating how individual cells regulate gene expression through modulation of transcription factor activities. Specifically, we discuss four leading experimental approaches, the data that can be obtained from each, and important considerations that investigators should be aware of when drawing conclusions from such data.


2020 ◽  
Vol 31 (7) ◽  
pp. 771-778
Author(s):  
Lei Wang ◽  
Shengpan Chen ◽  
Yan Liu ◽  
Hongqi Zhang ◽  
Nianjun Ren ◽  
...  

AbstractMicroRNAs (miRNAs) refer to a class of small endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level. Emerging studies have shown that miRNAs play critical roles in tumorigenesis and cancer progression. However, roles and mechanisms of miRNA dysregulation in the pathogenesis of meningioma are not fully understood. Here, we first reviewed existing research of aberrantly expressed miRNAs identified by high throughput microarray profiling in meningioma. We also explored the potential of miRNA as biomarkers and therapeutic targets for novel treatment paradigms of meningiomas. In addition, we summarized recent researches that focused on the possible mechanisms involved in miRNA-mediate meningioma occurrence and progression. This review provides an overview of miRNA deregulation in meningioma and indicates the potential of miRNAs to be used as biomarkers or novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document