scholarly journals Development and Validation of a Prognostic Nomogram Based on DNA Methylation-Driven Genes for Patients With Ovarian Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Min Zhou ◽  
Shasha Hong ◽  
Bingshu Li ◽  
Cheng Liu ◽  
Ming Hu ◽  
...  

Background: DNA methylation affects the development, progression, and prognosis of various cancers. This study aimed to identify DNA methylated-differentially expressed genes (DEGs) and develop a methylation-driven gene model to evaluate the prognosis of ovarian cancer (OC).Methods: DNA methylation and mRNA expression profiles of OC patients were downloaded from The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases. We used the R package MethylMix to identify DNA methylation-regulated DEGs and built a prognostic signature using LASSO Cox regression. A quantitative nomogram was then drawn based on the risk score and clinicopathological features.Results: We identified 56 methylation-related DEGs and constructed a prognostic risk signature with four genes according to the LASSO Cox regression algorithm. A higher risk score not only predicted poor prognosis, but also was an independent poor prognostic indicator, which was validated by receiver operating characteristic (ROC) curves and the validation cohort. A nomogram consisting of the risk score, age, FIGO stage, and tumor status was generated to predict 3- and 5-year overall survival (OS) in the training cohort. The joint survival analysis of DNA methylation and mRNA expression demonstrated that the two genes may serve as independent prognostic biomarkers for OS in OC.Conclusion: The established qualitative risk score model was found to be robust for evaluating individualized prognosis of OC and in guiding therapy.

2020 ◽  
Vol 10 ◽  
Author(s):  
Zuhua Chen ◽  
Bo Liu ◽  
Minxiao Yi ◽  
Hong Qiu ◽  
Xianglin Yuan

PurposeThe exploration and interpretation of DNA methylation-driven genes might contribute to molecular classification, prognostic prediction and therapeutic choice. In this study, we built a prognostic risk model via integrating analysis of the transcriptome and methylation profile for patients with gastric cancer (GC).MethodsThe mRNA expression profiles, DNA methylation profiles and corresponding clinicopathological information of 415 GC patients were downloaded from The Cancer Genome Atlas (TCGA). Differential expression and correlation analysis were performed to identify DNA methylation-driven genes. The candidate genes were selected by univariate Cox regression analyses followed by the least absolute shrinkage and selection operator (LASSO) regression. A prognostic risk nomogram model was then built together with clinicopathological parameters.Results5 DNA methylation-driven genes (CXCL3, F5, GNAI1, GAMT and GHR) were identified by integrated analyses and selected to construct the prognostic risk model with clinicopathological parameters. High expression and low DNA hypermethylation of F5, GNAI1, GAMT and GHR, as well as low expression and high DNA hypomethylation of CXCL3 were significantly associated with poor prognosis rates, respectively. The high-risk group showed a significantly shorter prognosis than the low-risk group in the TCGA dataset (HR = 0.212, 95% CI = 0.139–0.322, P = 2e-15). The final nomogram model showed high predictive efficiency and consistency in the training and validation group.ConclusionWe construct and validate a prognostic nomogram model for GC based on five DNA methylation-driven genes with high performance and stability. This nomogram model might be a powerful tool for prognosis evaluation in the clinic and also provided novel insights into the epigenetics in GC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiang Yang ◽  
Shasha Hong ◽  
Xiaoyi Zhang ◽  
Jingchun Liu ◽  
Ying Wang ◽  
...  

BackgroundThe tumor immune microenvironment (TIME) has been recognized to be an imperative factor facilitating the acquisition of many cancer-related hallmarks and is a critical target for targeted biological therapy. This research intended to construct a risk score model premised on TIME-associated genes for prediction of survival and identification of potential drugs for ovarian cancer (OC) patients.Methods and ResultsThe stromal and immune scores were computed utilizing the ESTIMATE algorithm in OC patient samples from The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network and differentially expressed genes analyses were utilized to detect stromal-and immune-related genes. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was utilized for additional gene selection. The genes that were selected were utilized as the input for a stepwise regression to construct a TIME-related risk score (TIMErisk), which was then validated in Gene Expression Omnibus (GEO) database. For the evaluation of the protein expression levels of TIME regulators, the Human Protein Atlas (HPA) dataset was utilized, and for their biological functions, the TIMER and CIBERSORT algorithm, immunoreactivity, and Immune Cell Abundance Identifier (ImmuCellAI) were used. Possible OC medications were forecasted utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). TIMErisk was developed based on ALPK2, CPA3, PTGER3, CTHRC1, PLA2G2D, CXCL11, and ZNF683. High TIMErisk was recognized as a poor factor for survival in the GEO and TCGA databases; subgroup analysis with FIGO stage, grade, lymphatic and venous invasion, debulking, and tumor site also indicated similar results. Functional immune cells corresponded to more incisive immune reactions, including secretion of chemokines and interleukins, natural killer cell cytotoxicity, TNF signaling pathway, and infiltration of activated NK cells, eosinophils, and neutrophils in patients with low TIMErisk. Several small molecular medications which may enhance the prognosis of patients in the TIMErisk subgroup were identified. Lastly, an enhanced predictive performance nomogram was constructed by compounding TIMErisk with the FIGO stage and debulking.ConclusionThese findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for OC patients and may be a foundation for future mechanistic research of their association.


2020 ◽  
Author(s):  
Dai Zhang ◽  
Si Yang ◽  
Yiche Li ◽  
Meng Wang ◽  
Jia Yao ◽  
...  

Abstract Background: Ovarian cancer (OV) is deemed as the most lethal gynecological cancer in women. The aim of this study was construct an effective gene prognostic model for OV patients.Methods: The expression profiles of glycolysis-related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed in training and test sets.Results: Based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4), a gene risk signature was identified to predict the outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high-grade OV, in the TCGA dataset, with areas under the curve of 0.709, 0.762, and 0.808 for 3-, 5- and 10-year survival, respectively. Similar results were found in the test sets, and the signature was also an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was constructed.Conclusion: Our study established a nine-GRG risk model and a nomogram to better perform on OV patients’ survival prediction. The risk model represents a promising and independent prognostic predictor for OV patients. Moreover, our study of GRGs could offer guidances for underlying mechanisms explorations in the future.


Author(s):  
Xibo Zhao ◽  
Shanshan Cong ◽  
Qiuyan Guo ◽  
Yan Cheng ◽  
Tian Liang ◽  
...  

With the highest case-fatality rate among women, the molecular pathological alterations of ovarian cancer (OV) are complex, depending on the diversity of genomic alterations. Increasing evidence supports that immune infiltration in tumors is associated with prognosis. Therefore, we aim to assess infiltration in OV using multiple methods to capture genomic signatures regulating immune events to identify reliable predictions of different outcomes. A dataset of 309 ovarian serous cystadenocarcinoma patients with overall survival >90 days from The Cancer Genome Atlas (TCGA) was analyzed. Multiple estimations and clustering methods identified and verified two immune clusters with component differences. Functional analyses pointed out immune-related alterations underlying internal genomic variables potentially. After extracting immune genes from a public database, the LASSO Cox regression model with 10-fold cross-validation was used for selecting genes associated with overall survival rate significantly, and a risk score model was then constructed. Kaplan–Meier survival and Cox regression analyses among cohorts were performed systematically to evaluate prognostic efficiency among the risk score model and other clinical pathological parameters, establishing a predictive ability independently. Furthermore, this risk score model was compared among identified signatures in previous studies and applied to two external cohorts, showing better prediction performance and generalization ability, and also validated as robust in association with immune cell infiltration in bulk tissues. Besides, a transcription factor regulation network suggested upper regulatory mechanisms in OV. Our immune risk score model may provide gyneco-oncologists with predictive values for the prognosis and treatment management of patients with OV.


2020 ◽  
Author(s):  
Dai Zhang ◽  
Si Yang ◽  
Yiche Li ◽  
Meng Wang ◽  
Jia Yao ◽  
...  

Abstract Background: Ovarian cancer (OV) is deemed as the most lethal gynecological cancer in women. The aim of this study was construct an effective gene prognostic model for OV patients.Methods: The expression profiles of glycolysis-related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed in training and test sets.Results: Based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4), a gene risk signature was identified to predict the outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high-grade OV, in the TCGA dataset, with areas under the curve of 0.709, 0.762, and 0.808 for 3-, 5- and 10-year survival, respectively. Similar results were found in the test sets, and the signature was also an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was constructed.Conclusion: Our study established a nine-GRG risk model and a nomogram to better perform on OV patients’ survival prediction. The risk model represents a promising and independent prognostic predictor for OV patients. Moreover, our study of GRGs could offer guidance for underlying mechanisms explorations in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Weige Zhou ◽  
Shijing Zhang ◽  
Hui-biao Li ◽  
Zheyou Cai ◽  
Shuting Tang ◽  
...  

There were no systematic researches about autophagy-related long noncoding RNA (lncRNA) signatures to predict the survival of patients with colon adenocarcinoma. It was necessary to set up corresponding autophagy-related lncRNA signatures. The expression profiles of lncRNAs which contained 480 colon adenocarcinoma samples were obtained from The Cancer Genome Atlas (TCGA) database. The coexpression network of lncRNAs and autophagy-related genes was utilized to select autophagy-related lncRNAs. The lncRNAs were further screened using univariate Cox regression. In addition, Lasso regression and multivariate Cox regression were used to develop an autophagy-related lncRNA signature. A risk score based on the signature was established, and Cox regression was used to test whether it was an independent prognostic factor. The functional enrichment of autophagy-related lncRNAs was visualized using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Ten prognostic autophagy-related lncRNAs (AC027307.2, AC068580.3, AL138756.1, CD27-AS1, EIF3J-DT, LINC01011, LINC01063, LINC02381, AC073896.3, and SNHG16) were identified to be significantly different, which made up an autophagy-related lncRNA signature. The signature divided patients with colon adenocarcinoma into the low-risk group and the high-risk group. A risk score based on the signature was a significantly independent factor for the patients with colon adenocarcinoma (HR=1.088, 95%CI=1.057−1.120; P<0.001). Additionally, the ten lncRNAs were significantly enriched in autophagy process, metabolism, and tumor classical pathways. In conclusion, the ten autophagy-related lncRNAs and their signature might be molecular biomarkers and therapeutic targets for the patients with colon adenocarcinoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
He Li ◽  
Nayiyuan Wu ◽  
Zhao-Yi Liu ◽  
Yong-Chang Chen ◽  
Quan Cheng ◽  
...  

AbstractGrowing evidence suggest that transcription factors (TFs) play vital roles in serous ovarian cancer (SOC). In the present study, TFs mRNA expression profiles of 564 SOC subjects in the TCGA database, and 70 SOC subjects in the GEO database were screened. A 17-TFs related prognostic signature was constructed using lasso cox regression and validated in the TCGA and GEO cohorts. Consensus clustering analysis was applied to establish a cluster model. The 17-TFs related prognostic signature, risk score and cluster models were effective at accurately distinguishing the overall survival of SOC. Analysis of genomic alterations were used to elaborate on the association between the 17-TFs related prognostic signature and genomic aberrations. The GSEA assay results suggested that there was a significant difference in the inflammatory and immune response pathways between the high-risk and low-risk score groups. The potential immune infiltration, immunotherapy, and chemotherapy responses were analyzed due to the significant difference in the regulation of lymphocyte migration and T cell-mediated cytotoxicity between the two groups. The results indicated that patients with low-risk score were more likely to respond anti-PD-1, etoposide, paclitaxel, and veliparib but not to gemcitabine, doxorubicin, docetaxel, and cisplatin. Also, the prognostic nomogram model revealed that the risk score was a good prognostic indicator for SOC patients. In conclusion, we explored the prognostic values of TFs in SOC and developed a 17-TFs related prognostic signature to predict the survival of SOC patients.


2020 ◽  
Vol 16 (13) ◽  
pp. 837-848 ◽  
Author(s):  
Guohong Liu ◽  
Yunbao Pan ◽  
Yueying Li ◽  
Haibo Xu

Aims: We aimed to find out potential novel biomarkers for prognosis of glioblastoma (GBM). Materials & methods: We downloaded mRNA and lncRNA expression profiles of 169 GBM and five normal samples from The Cancer Genome Atlas and 129 normal brain samples from genotype-tissue expression. We use R language to perform the following analyses: differential RNA expression analysis of GBM samples using ‘edgeR’ package, survival analysis taking count of single or multiple gene expression level using ‘survival’ package, univariate and multivariate Cox regression analysis using Cox function plugged in ‘survival’ package. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis were performed using FunRich tool online. Results and conclusion: We obtained differentially DEmRNAs and DElncRNAs in GBM samples. Most prognostically relevant mRNAs and lncRNAs were filtered out. ‘GPCR ligand binding’ and ‘Class A/1’ are found to be of great significance. In short, our study provides novel biomarkers for prognosis of GBM.


2022 ◽  
Author(s):  
Thongher Lia ◽  
Yanxiang Shao ◽  
Parbatraj Regmi ◽  
Xiang Li

Bladder cancer is one of the highly heterogeneous disorders accompanied by a poor prognosis. This study aimed to construct a model based on pyroptosis‑related lncRNA to evaluate the potential prognostic application in bladder cancer. The mRNA expression profiles of bladder cancer patients and corresponding clinical data were downloaded from the public database from The Cancer Genome Atlas (TCGA). Pyroptosis‑related lncRNAs were identified by utilizing a co-expression network of Pyroptosis‑related genes and lncRNAs. The lncRNA was further screened by univariate Cox regression analysis. Finally, 8 pyroptosis-related lncRNA markers were established using Lasso regression and multivariate Cox regression analysis. Patients were separated into high and low-risk groups based on the performance value of the median risk score. Patients in the high-risk group had significantly poorer overall survival (OS) than those in the low-risk group (p &lt; 0.001), and In multivariate Cox regression analysis, the risk score was an independent predictive factor of OS ( HR&gt;1, P&lt;0.01). The area under the curve (AUC) of the 3- and 5-year OS in the receiver operating characteristic (ROC) curve were 0.742 and 0.739 respectively. In conclusion, these 8 pyroptosis-related lncRNA and their markers may be potential molecular markers and therapeutic targets for bladder cancer patients.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1024-A1024
Author(s):  
Suman Ghosal

Abstract microRNAs (miRNAs) and long intergenic noncoding RNAs (lincRNAs) have been reported as important markers for many cancers. In search of new markers for the metastatic or aggressive phenotypes in the neuroendocrine tumor pheochromocytomas and paragangliomas (PCPG), we analyzed the non-coding transcriptome from patient gene expression data in The Cancer Genome Atlas. We used differential expression analysis and an elastic-net machine-learning model to identify miRNA and lincRNA transcriptomic signature specific to PCPG molecular subtypes. Similarly, miRNAs and lincRNAs specific to aggressive PCPGs were identified, and univariate and multivariate analysis were performed for identifying factors associated with metastasis-free survival. Upregulation of 13 lincRNAs and 4 miRNAs was found to be associated with aggressive/metastatic PCPGs. RT-PCR validation in tumor samples from PCPG patients confirmed the overexpression of 4 miRNAs and 4 lincRNAs in metastatic compared to non-metastatic PCPGs. Kaplan-Meier analysis identified 3 miRNAs and 5 lincRNAs as prognostic markers for metastasis-free survival of patients in PCPGs. In a multivariate Cox regression analysis combining these miRNA and lincRNA expression signatures with the previously identified clinically relevant parameters like SDHB germline mutation, ATRX somatic mutation, tumor location and hormone secretion phenotypes, we identified the miRNA miR-182 and lincRNA HIF1A-AS2 as independent predictors of poor metastasis-free survival. We formulated a risk-score model using multivariate analysis of lincRNA and miRNA expression profiles, presence of SDHB and ATRX mutations, tumor location, and hormone secretion phenotypes. Stratification of PCPG patients with this risk-score showed significant differences in metastasis-free survival.


Sign in / Sign up

Export Citation Format

Share Document