scholarly journals Regulation of Monocyte-Macrophage Responses in Cirrhosis—Role of Innate Immune Programming and Checkpoint Receptors

2019 ◽  
Vol 10 ◽  
Author(s):  
Antonio Riva ◽  
Gautam Mehta
Author(s):  
Yuya Takakubo ◽  
G. Barreto ◽  
Yrjo T. Konttinen ◽  
H. Oki ◽  
Michiaki Takagi

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


2021 ◽  
Vol 22 (6) ◽  
pp. 3090
Author(s):  
Toshimasa Shimizu ◽  
Hideki Nakamura ◽  
Atsushi Kawakami

Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.


Dermatology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Aleksandra Batycka-Baran ◽  
Wojciech Baran ◽  
Danuta Nowicka-Suszko ◽  
Maria Koziol-Gałczyńska ◽  
Andrzej Bieniek ◽  
...  

<b><i>Background:</i></b> Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease. An important role of innate immune dysregulation in the pathogenesis of HS has been highlighted. S100A7 (psoriasin) is an innate, antimicrobial protein that exerts proinflammatory and chemotactic action. <b><i>Objectives:</i></b> The objective of the study was to investigate serum concentrations of S100A7 in individuals with HS as compared to healthy controls. Further, we evaluated the expression of S100A7 in lesional HS skin as compared to perilesional (clinically uninvolved) HS skin and normal skin. <b><i>Methods:</i></b> Serum concentrations of S100A7 were evaluated with a commercially available ELISA kit. The expression of S100A7 in the skin was assessed using qRT-PCR and immunofluorescence staining. <b><i>Results:</i></b> We found increased expression of S100A7 in lesional HS skin as compared to perilesional HS skin (<i>p</i> = 0.0017). The expression of S100A7 in lesional HS skin was positively associated with serum C-reactive protein concentration and the severity of disease according to Hurley staging. The serum concentration of S100A7 in individuals with HS was decreased as compared to healthy controls and patients with psoriasis. <b><i>Conclusions:</i></b> Upregulated in lesional HS skin, S100A7 may enhance the inflammatory process and contribute to the HS pathogenesis.


2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Marissa A. Guttenberg ◽  
Aaron T. Vose ◽  
Robert M. Tighe

Author(s):  
Wanhai Qin ◽  
Xanthe Brands ◽  
Cornelis Veer ◽  
Alex F. Vos ◽  
Brendon P. Scicluna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document