scholarly journals Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Peng ◽  
Youe He ◽  
Jun Huang ◽  
Yongguang Tao ◽  
Shuang Liu

Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9520-9520 ◽  
Author(s):  
Paolo Antonio Ascierto ◽  
Ignacio Melero ◽  
Shailender Bhatia ◽  
Petri Bono ◽  
Rachel E. Sanborn ◽  
...  

9520 Background: Signaling via LAG-3 and other T-cell inhibitory receptors (eg, PD-1) can lead to T-cell dysfunction and tumor immune escape. Simultaneous blockade of LAG-3 + PD-1 may synergistically restore T-cell activation and enhance antitumor immunity. In a phase 1/2a study, BMS-986016 (IgG4 mAb targeting LAG-3) ± nivo (IgG4 mAb targeting PD-1) demonstrated tolerability, peripheral T-cell activation, and preliminary clinical activity (NCT01968109; Lipson E, et al. J Immunother Cancer. 2016;4[s1]:173 [P232]). Here we describe preliminary efficacy of BMS-986016 + nivo in pts with MEL whose disease progressed on/after prior anti–PD-1/PD-L1 therapy, along with updated safety from all dose expansion pts. Methods: Pts with MEL must have had prior anti–PD-1/PD-L1 (± anti–CTLA-4 or BRAF/MEK inhibitors) and progressive disease (PD). Pts received BMS-986016 80 mg + nivo 240 mg IV Q2W. Primary objectives were safety and objective response rate (ORR; complete [CR] + partial [PR] response), disease control rate (DCR; CR + uCR + PR + uPR + stable disease [SD] > 12 wk), and duration of response (RECIST v1.1). Results: At data cutoff, 43 pts with MEL had been treated with BMS-986016 + nivo following PD on/after prior anti–PD-1/PD-L1 with known prior best responses of 1 CR, 9 PR, 12 SD, and 16 PD. Of the 43 pts, 30 (70%) also had prior anti–CTLA-4, 20 (47%) had ≥ 3 prior therapies, and 15 (35%) had BRAFmutations .In the 31 efficacy-evaluable pts to date, ORR was 16% (confirmed/unconfirmed) and DCR was 45% with benefit observed even in some pts refractory to prior anti–PD-1. Evaluations are ongoing for most pts, with median treatment duration of 10 wk for all 43 pts. Immunopathologic (eg, PD-1/PD-L1 and LAG-3 expression) and clinical characteristics of responders vs nonresponders will be presented. Any grade and grade 3/4 treatment-related AEs occurred in 46% and 9%, respectively, across all dose expansion pts (n = 129). Conclusion: Addition of BMS-986016 to nivolumab demonstrates encouraging initial efficacy in pts with MEL whose disease progressed on/after prior anti–PD-1/PD-L1 therapy, and a safety profile similar to nivolumab monotherapy. Clinical trial information: NCT01968109.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4211-4211
Author(s):  
Patrick R. Hagner ◽  
Fadi Towfic ◽  
Frank Schmitz ◽  
Xuehai Wang ◽  
Andrew P. Weng ◽  
...  

Abstract Background : Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, constituting 30-40% of all new cases. Avadomide, a small molecule cereblon modulator currently being developed in DLBCL, binds to cereblon in the CRL4CRBN E3 ligase, leading to ubiquitination and subsequent proteasomal degradation of transcription factors Aiolos and Ikaros. This results in decreased proliferation and increased apoptosis of DLBCL cells, independent of cell-of-origin, and immunostimulatory effects in T and NK cells, as measured by increased cytokine production, cell surface activation markers, and enhanced antibody-dependent cellular cytotoxicity. A novel gene expression-based classifier, which detects DLBCL patients with T cell and macrophage infiltration within the tumor microenvironment, has been shown to enrich for responders to avadomide. Avadomide, as a single agent and in combination with rituximab, is currently being investigated in relapsed/refractory DLBCL (NCT01421524 and NCT02031419). Methods : Eighty-one DLBCL patients were enrolled in the expansion phase of the CC-122-ST-001 study (NCT01421524). Peripheral blood T cell subsets were enumerated at screening (baseline), cycle 1 day 15 (C1D15) and cycle 2 day 15 (C2D15) by flow cytometric immunophenotyping. Ex vivo production of IL-2 and IFNγ, as a measure of T cell activation, was determined using the α-CD3 TruCulture Assay. Changes from baseline were evaluated using the t-test with P<0.05 considered significant. T cell receptor (TCR) repertoire analysis through TCRB CDR3 region sequencing was done to derive metrics of population diversity and composition. RNAseq was performed on screening and on-treatment (C1D10/15) biopsies; gene expression deconvolution analyses were used to identify immune cell populations within the tumor microenvironment. Results : Avadomide treatment results in decreased peripheral CD4+ and CD8+ naïve (CD45RA+/CD45RO-) T cells and increased memory (CD45RA-/CD45RO+) and activated (HLA-DR+) T cells, without significantly affecting the absolute numbers of total CD3+, CD4+ or CD8+ populations (Table). High-dimensional single-cell mass cytometry of longitudinally collected peripheral blood samples confirmed the significant increase in CD8+ memory T cells and identified an increase in Treg populations and decreases in CD16+ monocytes and dendritic cells (adj. P<0.02). A single dose of avadomide on C1D1 significantly activated T cells, as indicated by a 300% increase in IL-2 (P=0.018) and 185% increase in IFNγ (P=0.003) secretion. Assessment of TCR B clonotypes revealed that avadomide increases the TCRB repertoire breadth, while reducing its clonality. To understand the influence of avadomide treatment on the tumor microenvironment, we performed RNA sequencing on tumor biopsies collected at screening and two weeks after initiating avadomide treatment (n=18 patients). Deconvolution analyses identified an increase in the expression of genes indicative of various T cell populations, dendritic cells and macrophages, while B cell associated gene expression decreased in on-treatment biopsies compared to screening biopsies. Gene set enrichment analysis (GSEA) revealed significantly increased expression of genes associated with "HALLMARK Interferon Alpha Response" (adj. P=0.04), indicative of an increase in Type I/II interferon production by cells such as T and NK cells. Buttressing the in vitro observations of avadomide-mediated inhibition of DLBCL cell proliferation, GSEA identified a decrease in "E2F targets" (adj. P=0.007) consistent with decreased proliferation of malignant B cells. Conclusion : Avadomide is a potent immunomodulating agent with multiple immune activating properties, including positive effects on T cell activation, as well as a broad expansion of T cell populations as defined by an increase in the richness of the T cell repertoire in blood. In addition, our data demonstrate decreased proliferation of malignant B cells in the tumor, with concomitant increased trafficking of immune cells, such as dendritic cells and macrophages, to the tumor microenvironment. These data further delineate the immune enhancing activity of avadomide in DLBCL patients beyond T-cell activation and provide rational combination strategies. Table. Table. Disclosures Hagner: Celgene Corporation: Employment, Equity Ownership. Towfic:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene Corporation: Employment, Equity Ownership. Gandhi:Celgene Corporation: Employment, Equity Ownership.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 810 ◽  
Author(s):  
Kuan-Yin Shen ◽  
Hsin-Yu Liu ◽  
Wan-Lun Yan ◽  
Chiao-Chieh Wu ◽  
Ming-Hui Lee ◽  
...  

Dendritic cells (DCs) are antigen-presenting cells involved in T cell activation and differentiation to regulate immune responses. Lipoimmunogens can be developed as pharmaceutical lipoproteins for cancer immunotherapy to target DCs via toll-like receptor 2 (TLR2) signaling. Previously, we constructed a lipoimmunogen, a lipidated human papillomavirus (HPV) E7 inactive mutant (rlipoE7m), to inhibit the growth of HPV16 E7-expressing tumor cells in a murine model. Moreover, this antitumor effect could be enhanced by a combinatory treatment with CpG oligodeoxynucleotides (ODN). To improve safety, we developed a rlipoE7m plus DOTAP liposome-encapsulated native phosphodiester CpG (POCpG/DOTAP) treatment to target DCs to enhance antitumor immunity. We optimized the formulation of rlipoE7m and POCpG/DOTAP liposomes to promote conventional DC and plasmacytoid DC maturation in vitro and in vivo. Combination of rlipoE7m plus POCpG/DOTAP could activate conventional DCs and plasmacytoid DCs to augment IL-12 production to promote antitumor responses by intravenous injection. In addition, the combination of rlipoE7m plus POCpG/DOTAP could elicit robust cytotoxic T lymphocytes (CTLs) by intravenous immunization. Interestingly, the combination of rlipoE7m plus POCpG/DOTAP could efficiently inhibit tumor growth via intravenous immunization. Moreover, rlipoE7m plus POCpG/DOTAP combined reduced the number of tumor-infiltrating regulatory T cells dramatically due to downregulation of IL-10 production by DCs. These results showed that the combination of rlipoE7m plus POCpG/DOTAP could target DCs via intravenous delivery to enhance antitumor immunity and reduce the number of immunosuppressive cells in the tumor microenvironment.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ke Wang ◽  
Zuojian Hu ◽  
Cuiping Zhang ◽  
Lujie Yang ◽  
Li Feng ◽  
...  

Over the past several years, SIRT5 has attracted considerable attention in metabolic regulation. However, the function of SIRT5 in tumorigenesis by regulating tumor microenvironment is poorly understood. In this work, we found that Sirt5 knockout mice were resistant to AOM and DSS-induced colitis-associated colorectal tumorigenesis and the level of IFN-γ in their tumor microenvironment was higher. Additionally, proteome and network analysis revealed that SIRT5 was important in the T cell receptor signaling pathway. Furthermore, we determined that a deficiency of Sirt5 induced stronger T cell activation and demonstrated that SIRT5 played a pivotal role in regulating the differentiation of CD4+ regulatory T (Treg) cells and T helper 1 (Th1) cells. An imbalance in the lineages of immunosuppressive Treg cells and the inflammatory Th1 subsets of helper T cells leads to the development of colon cancer. Our results revealed a regulatory role of SIRT5 in T cell activation and colorectal tumorigenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guofeng Ma ◽  
Chun Li ◽  
Zhilei Zhang ◽  
Ye Liang ◽  
Zhijuan Liang ◽  
...  

Immunotherapy, especially PD-1/PD-L1 checkpoint blockade immunotherapy, has led tumor therapy into a new era. However, the vast majority of patients do not benefit from immunotherapy. One possible reason for this lack of response is that the association between tumors, immune cells and metabolic reprogramming in the tumor microenvironment affect tumor immune escape. Generally, the limited amount of metabolites in the tumor microenvironment leads to nutritional competition between tumors and immune cells. Metabolism regulates tumor cell expression of PD-L1, and the PD-1/PD-L1 immune checkpoint regulates the metabolism of tumor and T cells, which suggests that targeted tumor metabolism may have a synergistic therapeutic effect together with immunotherapy. However, the targeting of different metabolic pathways in different tumors may have different effects on tumor immune escape. Herein, we discuss the influence of glucose metabolism and glutamine metabolism on tumor immune escape and describe the theoretical basis for strategies targeting glucose or glutamine metabolism in combination with PD-1/PD-L1 checkpoint blockade immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3818
Author(s):  
Maud Plantinga ◽  
Denise A. M. H. van den Beemt ◽  
Ester Dünnebach ◽  
Stefan Nierkens

Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.


Oncogene ◽  
2021 ◽  
Author(s):  
Francesca Alfei ◽  
Ping-Chih Ho ◽  
Wan-Lin Lo

AbstractThe exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell–T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document