scholarly journals Human Milk Drives the Intimate Interplay Between Gut Immunity and Adipose Tissue for Healthy Growth

2021 ◽  
Vol 12 ◽  
Author(s):  
Lieke W. J. van den Elsen ◽  
Valerie Verhasselt

As the physiological food for the developing child, human milk is expected to be the diet that is best adapted for infant growth needs. There is also accumulating evidence that breastfeeding influences long-term metabolic outcomes. This review covers the potential mechanisms by which human milk could regulate healthy growth. We focus on how human milk may act on adipose tissue development and its metabolic homeostasis. We also explore how specific human milk components may influence the interplay between the gut microbiota, gut mucosa immunity and adipose tissue. A deeper understanding of these interactions may lead to new preventative and therapeutic strategies for both undernutrition and other metabolic diseases and deserves further exploration.

2017 ◽  
Vol 15 (4) ◽  
pp. 507-511 ◽  
Author(s):  
Juliana Magdalon ◽  
William Tadeu Festuccia

ABSTRACT Obesity is characterized by an excessive increase in the adipose tissue mass, and is associated with higher incidence of several chronic metabolic diseases, such as type 2 diabetes. Therefore, its increasing prevalence is a public health concern, and it is important to better understand its etiology to develop new therapeutic strategies. Evidence accumulated over the years indicates that obesity is associated with a marked activation in adipose tissue of the mechanistic target of rapamycin complex 1 (mTORC1), a signaling pathway that controls lipid metabolism, and adipocyte formation and maintenance. Curiously, mTORC1 is also involved in the control of nonshivering thermogenesis and recruitment as well as browning of white adipose tissue. In this review, we explored mTORC1 functions in adipocytes and presented evidence, suggesting that mTORC1 may either increase or reduce adiposity, depending on the conditions and activation levels.


2005 ◽  
Vol 75 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Helen Budge ◽  
Mo G. Gnanalingham ◽  
David S. Gardner ◽  
Alison Mostyn ◽  
Terence Stephenson ◽  
...  

Author(s):  
Justin J. Rochford

Appropriately functioning adipose tissue is essential for human health, a fact most clearly illustrated by individuals with lipodystrophy, who have impaired adipose development and often suffer severe metabolic disease as a result. Humans with obesity display a similar array of metabolic problems. This reflects failures in fat tissue function in obesity, which results in consequences similar to those seen when insufficient adipose tissue is present. Thus a better understanding of the molecules that regulate the development of fat tissue is likely to aid the generation of novel therapeutic strategies for the treatment of all disorders of altered fat mass. Single gene disruptions causing lipodystrophy can give unique insights into the importance of the proteins they encode in human adipose tissue development. Moreover, the mechanisms via which they cause lipodystrophy can reveal new molecules and pathways important for adipose tissue development and function as well as confirming the importance of molecules identified from studies of cellular and animal models.


2021 ◽  
Vol 22 (8) ◽  
pp. 3994
Author(s):  
Yousheng Mao ◽  
Kwang-Heum Hong ◽  
Weifang Liao ◽  
Li Li ◽  
Seong-Jin Kim ◽  
...  

Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.


2020 ◽  
Vol 477 (14) ◽  
pp. 2639-2653 ◽  
Author(s):  
Robert M. Gutgesell ◽  
Evangelia E. Tsakiridis ◽  
Shanza Jamshed ◽  
Gregory R. Steinberg ◽  
Alison C. Holloway

Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tiziana Squillaro ◽  
Gianfranco Peluso ◽  
Umberto Galderisi ◽  
Giovanni Di Bernardo

Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.


2021 ◽  
Vol 10 ◽  
Author(s):  
Katelyn E. Senkus ◽  
Yanqi Zhang ◽  
Hui Wang ◽  
Libo Tan ◽  
Kristi M. Crowe-White

Abstract Dietary patterns high in fat contribute to the onset of cardiometabolic disease through the accrual of adipose tissue (AT). Lycopene, a carotenoid shown to exert multiple health benefits, may disrupt these metabolic perturbations. The purpose of the present study was to evaluate AT development and obesity-associated metabolic outcomes in the neonate and weanling offspring of Sprague-Dawley mothers fed a high-fat diet (HFD = 50 % fat) with and without lycopene supplementation. Sprague-Dawley rats consumed either a normal fat diet (NFD; 25 % fat) or HFD throughout gestation. Upon delivery, half of HFD mothers were transitioned to an HFD supplemented with 1 % lycopene (HFDL). At postnatal day 14 (P14), P25, and P35, pups were euthanised, body weight was recorded, and visceral white AT (WAT) and brown AT (BAT) mass were determined. Serum redox status, adipokines, glucose and inflammatory biomarkers were evaluated, as well as BAT mRNA expression of uncoupling protein 1 (UCP1). The HFD was effective in inducing weight gain as evident by significantly greater BW and WAT in the HFD group compared to the NFD group across all time points. Compared to HFD, the HFDL group exhibited significantly greater BAT with concomitant reductions in WAT mass, serum lipid peroxides and serum glucose. No significant differences were observed in serum adipokines, inflammatory markers or UCP1 expression despite the aforementioned alterations in AT development. Results suggest that dietary lycopene supplementation may influence metabolic outcomes during the weaning and post-weaning periods. Additional research is warranted to elucidate molecular mechanisms by which lycopene influences AT biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Zhang ◽  
Saijun Xu ◽  
Jinyan Liu ◽  
Yong Xie ◽  
Sun Xiaobo

Obesity, a global public health issue, is characterized by excessive adiposity and is strongly related to some chronic diseases including cardiovascular diseases and diabetes. Extra energy intake-induced adipogenesis involves various transcription factors and long noncoding RNAs (lncRNAs) that control lipogenic mRNA expression. Currently, lncRNAs draw much attention for their contribution to adipogenesis and adipose tissue function. Increasing evidence also manifests the pivotal role of lncRNAs in modulating white, brown, and beige adipose tissue development and affecting the progression of the diseases induced by adipose dysfunction. The aim of this review is to summarize the roles of lncRNAs in adipose tissue development and obesity-caused diseases to provide novel drug targets for the treatment of obesity and metabolic diseases.


2019 ◽  
Vol 79 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Julie A. Lovegrove

CVD remains the greatest cause of death globally, and with the escalating prevalence of metabolic diseases, including type-2 diabetes, CVD mortality is predicted to rise. While the replacement of SFA has been the cornerstone of effective dietary recommendations to decrease CVD risk since the 1980s, the validity of these recommendations have been recently challenged. A review of evidence for the impact of SFA reduction revealed no effect on CVD mortality, but a significant reduction in risk of CVD events (7–17%). The greatest effect was found when SFA were substituted with PUFA, resulting in 27% risk reduction in CVD events, with no effect of substitution with carbohydrate or protein. There was insufficient evidence from randomised controlled trials to conclude upon the impact of SFA replacement with MUFA on CVD and metabolic outcomes. However, there was high-quality evidence that reducing SFA lowered serum total, and specifically LDL-cholesterol, a key risk factor for CVD, with greatest benefits achieved by replacing SFA with unsaturated fats. The exchange of SFA with either PUFA or MUFA, also produced favourable effects on markers of glycaemia, reducing HbA1c, a long-term marker of glycaemic control. In conclusion, the totality of evidence supports lowering SFA intake and replacement with unsaturated fats to reduce the risk of CVD events, and to a lesser extent, cardiometabolic risk factors, which is consistent with current dietary guidelines.


Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 863
Author(s):  
Giulia Vizzari ◽  
Daniela Morniroli ◽  
Federica Ceroni ◽  
Elvira Verduci ◽  
Alessandra Consales ◽  
...  

Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant’s neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document