scholarly journals Comparison of Two Strategies to Generate Antigen-Specific Human Monoclonal Antibodies: Which Method to Choose for Which Purpose?

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna M. Ehlers ◽  
Constance F. den Hartog Jager ◽  
Tineke Kardol-Hoefnagel ◽  
Miriam M.D. Katsburg ◽  
André C. Knulst ◽  
...  

Human monoclonal antibodies (mAbs) are valuable tools to link genetic information with functional features and to provide a platform for conformational epitope mapping. Additionally, combined data on genetic and functional features provide a valuable mosaic for systems immunology approaches. Strategies to generate human mAbs from peripheral blood have been described and used in several studies including single cell sequencing of antigen-binding B cells and the establishment of antigen-specific monoclonal Epstein-Barr Virus (EBV) immortalized lymphoblastoid cell lines (LCLs). However, direct comparisons of these two strategies are scarce. Hence, we sought to set up these two strategies in our laboratory using peanut 2S albumins (allergens) and the autoantigen anti-Rho guanosine diphosphate dissociation inhibitor 2 (RhoGDI2, alternatively ‘ARHGDIB’) as antigen targets to directly compare these strategies regarding costs, time expenditure, recovery, throughput and complexity. Regarding single cell sequencing, up to 50% of corresponding V(D)J gene transcripts were successfully amplified of which 54% were successfully cloned into expression vectors used for heterologous expression. Seventy-five percent of heterologously expressed mAbs showed specific binding to peanut 2S albumins resulting in an overall recovery of 20.3%, which may be increased to around 29% by ordering gene sequences commercially for antibody cloning. In comparison, the establishment of monoclonal EBV-LCLs showed a lower overall recovery of around 17.6%. Heterologous expression of a mAb carrying the same variable region as its native counterpart showed comparable concentration-dependent binding abilities. By directly comparing those two strategies, single cell sequencing allows a broad examination of antigen-binding mAbs in a moderate-throughput manner, while the establishment of monoclonal EBV-LCLs is a powerful tool to select a small number of highly reactive mAbs restricted to certain B cell subpopulations. Overall, both strategies, initially set-up for peanut 2S albumins, are suitable to obtain human mAbs and they are easily transferrable to other target antigens as shown for ARHGDIB.

2021 ◽  
Author(s):  
Michael P. Doyle ◽  
Nurgun Kose ◽  
Viktoriya Borisevich ◽  
Elad Binshtein ◽  
Moushimi Amaya ◽  
...  

AbstractHendra virus (HeV) and Nipah virus (NiV), the prototypic members of the Henipavirus (HNV) genus, are emerging, zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans (Eaton et al., 2006). While several research groups have made strides in developing candidate vaccines and therapeutics against henipaviruses, such countermeasures have not been licensed for human use, and significant gaps in knowledge about the human immune response to these viruses exist. To address these gaps, we isolated a large panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior occupation-related exposure to the equine HeV vaccine (Equivac® HeV). Competition-binding and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies identified at least six distinct antigenic sites on the HeV/NiV receptor binding protein (RBP) that are recognized by human mAbs. Antibodies recognizing multiple antigenic sites potently neutralized NiV and/or HeV isolates in vitro. The most potent class of cross-reactive antibodies achieved neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3. Antibodies from this class mimic receptor binding by inducing a receptor-bound conformation to the HeV-RBP protein tetramer, exposing an epitope that appears to lie hidden in the interface between protomers within the HeV-RBP tetramer. Antibodies that recognize this cryptic epitope potently neutralized HeV and NiV. Flow cytometric studies using cell-surface-displayed HeV-RBP protein showed that cross-reactive, neutralizing mAbs from each of these classes cooperate for binding. In a highly stringent hamster model of NiVB infection, antibodies from both classes reduced morbidity and mortality and achieved synergistic protection in combination and provided therapeutic benefit when combined into two bispecific platforms. These studies identified multiple candidate mAbs that might be suitable for use in a cocktail therapeutic approach to achieve synergistic antiviral potency and reduce the risk of virus escape during treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2081-2081
Author(s):  
Szumam Liu ◽  
Mohammad Abdelgawwad ◽  
Shanrun Liu ◽  
X. Long Zheng

Abstract Introduction. Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood disorder, resulting from autoantibodies against ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor. However, the structural feature, binding epitope, and the mechanism of action of these autoantibodies in patients with acute iTTP are not fully understood. Methods. To further understand the pathogenesis of iTTP, single B cell immunoglobulin (Ig) sequencing using 10xChromium in 4 patients experiencing an acute episode of iTTP was performed; the expression and preliminary functional characterizations of selected clones were also carried out. Results. Approximately 2,631 viable and fluoresceinated ADAMTS13 labeled B cells (e.g., 7AAD -CD19 +CD20 +ADAMTS13 +) were sorted out from peripheral blood mononuclear cells of four patients with acute iTTP. These enriched ADAMTS13 antibody-producing B cells were then used for single cell analysis using 10xGenomics 5'-VDJ kit following the manufacturer's instruction. The single-cell gene expression libraries and VDJ libraries were constructed and sequenced by Hiseq at 20,000 reads/cell for gene expression and 5,000 reads/cell for VDJ sequences. Sequencing FASTQ files were mapped and counted by running through the Cell Ranger pipeline, and the final data were then further analyzed by the Loupe browser. We showed for the first time that the most frequent VJ combinations in the anti-ADAMTS13 IgG were: IGHV4-39:ILGJ4, IGHV3-48:ILGJ4, IGLV1-44:ILGLJ2, GLV5-45:ILGLJ3, IGLV2-14:ILGJ2, and IGLV3-21:ILGJ3 as shown in Figure 1. Of the top ten clones, the most frequently observed CDR3 (complementarity-determining region-3) sequences of these antibodies were CARDQLGISETQGSDLW on the heavy chain and CVIWHNSAWVF on the light chain as shown in Figure 2 and Table 1. The variable region sequences from the heavy and the light chains of Ig molecules were cloned into a human IgHG1 and a human IgL vector, respectively, which was then cotransfected in HEK293 cells. Western blotting, ELISA, immunoprecipitation, and functional assays were used to determine the expression and the function of human monoclonal IgG antibodies. Our preliminary results demonstrated the human monoclonal IgG antibodies bound and/or inhibited plasma ADAMTS13 activity. Conclusions. We conclude that there is clonal expansion of ADAMTS13 antibody producing B cells in acute iTTP and the cloned human monoclonal antibodies using the single B cell sequencing approach are functional. Our ongoing analysis on the structural and functional relationship of a large number of isolated human monoclonal antibodies may shed new light on the pathogenesis of iTTP. These antibodies may be useful to explore structural elements required for allosteric regulation of ADAMTS13 activity. Figure 1 Figure 1. Disclosures Zheng: AJMC: Honoraria; Clotsolution: Other: Co-founder; Takeda: Consultancy, Honoraria; Sanofi-Genzyme: Honoraria, Speakers Bureau; Alexion: Speakers Bureau.


2021 ◽  
Author(s):  
Jiachen Huang ◽  
Aaron D. Gingerich ◽  
Fredejah Royer ◽  
Amy V. Paschall ◽  
Alma Pena-Briseno ◽  
...  

AbstractStreptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most vaccine-included serotypes, a rise in infection due to non-vaccine serotypes, and moderate efficacy against some vaccine included serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multi-drug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined as vaccines in preclinical and clinical trials. An additional, yet unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (mAbs) targeting conserved pneumococcal proteins. Here, we isolate the first human mAbs (PhtD3, PhtD6, PhtD7, PhtD8, PspA16) against the pneumococcal histidine triad protein (PhtD), and the pneumococcal surface protein A (PspA), two conserved and protective antigens. mAbs to PhtD target diverse epitopes on PhtD, and mAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific mAbs bind to multiple serotypes, while mAb PspA16 serotype breadth is limited. mAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, mAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4, and in mice infected with pneumococcal serotype 3 when administered 24 hours after pneumococcal infection. All PhtD and PspA mAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results provide new human mAbs for pneumococcal disease prevention and treatment, and identify epitopes on PhtD and PspA recognized by human B cells.


2021 ◽  
Vol 89 (5) ◽  
Author(s):  
Jiachen Huang ◽  
Aaron D. Gingerich ◽  
Fredejah Royer ◽  
Amy V. Paschall ◽  
Alma Pena-Briseno ◽  
...  

ABSTRACT Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multidrug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined for their potential as vaccines in preclinical and clinical trials. An additional, yet-unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (MAbs) targeting conserved pneumococcal proteins. Here, we isolated the first human MAbs (PhtD3, PhtD6, PhtD7, PhtD8, and PspA16) against the pneumococcal histidine triad protein (PhtD) and the pneumococcal surface protein A (PspA), two conserved and protective antigens. MAbs to PhtD target diverse epitopes on PhtD, and MAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific MAbs bind to multiple serotypes, while MAb PspA16 serotype breadth is limited. MAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, MAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4 and in mice infected with pneumococcal serotype 3 when administered 24 h after pneumococcal infection. All PhtD and PspA MAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results identify new human MAbs for pneumococcal disease prevention and treatment and identify epitopes on PhtD and PspA recognized by human B cells.


2005 ◽  
Vol 79 (3) ◽  
pp. 1635-1644 ◽  
Author(s):  
Edward N. van den Brink ◽  
Jan ter Meulen ◽  
Freek Cox ◽  
Mandy A. C. Jongeneelen ◽  
Alexandra Thijsse ◽  
...  

ABSTRACT Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.


Author(s):  
Naveenchandra Suryadevara ◽  
Swathi Shrihari ◽  
Pavlo Gilchuk ◽  
Laura A. VanBlargan ◽  
Elad Binshtein ◽  
...  

SummaryMost human monoclonal antibodies (mAbs) neutralizing SARS-CoV-2 recognize the spike (S) protein receptor-binding domain and block virus interactions with the cellular receptor angiotensin-converting enzyme 2. We describe a panel of human mAbs binding to diverse epitopes on the N-terminal domain (NTD) of S protein from SARS-CoV-2 convalescent donors and found a minority of these possessed neutralizing activity. Two mAbs (COV2-2676 and COV2-2489) inhibited infection of authentic SARS-CoV-2 and recombinant VSV/SARS-CoV-2 viruses. We mapped their binding epitopes by alanine-scanning mutagenesis and selection of functional SARS-CoV-2 S neutralization escape variants. Mechanistic studies showed that these antibodies neutralize in part by inhibiting a post-attachment step in the infection cycle. COV2-2676 and COV2-2489 offered protection either as prophylaxis or therapy, and Fc effector functions were required for optimal protection. Thus, natural infection induces a subset of potent NTD-specific mAbs that leverage neutralizing and Fc-mediated activities to protect against SARS-CoV-2 infection using multiple functional attributes.


2008 ◽  
Vol 77 (1) ◽  
pp. 549-556 ◽  
Author(s):  
Hiroshi Tachibana ◽  
Xun-Jia Cheng ◽  
Hideo Tsukamoto ◽  
Johbu Itoh

ABSTRACT Four fully human monoclonal antibodies (MAbs) to Entamoeba histolytica intermediate subunit lectin (Igl) were prepared in XenoMouse mice, which are transgenic mice expressing human immunoglobulin loci. Examination of the reactivities of these MAbs to recombinant Igl1 and Igl2 of E. histolytica showed that XEhI-20 {immunoglobulin G2(κ) [IgG2(κ)]} and XEhI-28 [IgG2(κ)] were specific to Igl1, XEhI-B5 [IgG2(κ)] was specific to Igl2, and XEhI-H2 [IgM(κ)] was reactive with both Igls. Gene analyses revealed that the VH and VL germ lines were VH3-48 and L2 for XEhI-20, VH3-21 and L2 for XEhI-28, VH3-33 and B3 for XEhI-B5, and VH4-4 and A19 for XEhI-H2, respectively. Flow cytometry analyses showed that the epitopes recognized by all of these MAbs were located on the surfaces of living trophozoites. Confocal microscopy demonstrated that most Igl1 and Igl2 proteins were colocalized on the surface and in the cytoplasm, but different localization patterns in intracellular vacuoles were also present. The preincubation of trophozoites with XEhI-20, XEhI-B5, and XEhI-H2 caused significant inhibition of the adherence of trophozoites to Chinese hamster ovary cells, whereas preincubation with XEhI-28 did not do so. XEhI-20, XEhI-B5, and XEhI-H2 were injected intraperitoneally into hamsters 24 h prior to intrahepatic challenge with E. histolytica trophozoites. One week later, the mean abscess size in groups injected with one of the three MAbs was significantly smaller than that in controls injected with polyclonal IgG or IgM isolated from healthy humans. These results demonstrate that human MAbs to Igls may be applicable for immunoprophylaxis of amebiasis.


2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Wen-Yang Tsai ◽  
Hui-Ling Chen ◽  
Jih-Jin Tsai ◽  
Wanwisa Dejnirattisai ◽  
Amonrat Jumnainsong ◽  
...  

ABSTRACT The four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The envelope (E) protein is the major target of neutralizing antibodies and contains 3 domains (domain I [DI], DII, and DIII). Recent studies reported that human monoclonal antibodies (MAbs) recognizing DIII, the D1/DII hinge, the E-dimer epitope, or a quaternary epitope involving DI/DII/DIII are more potently neutralizing than those recognizing the fusion loop (FL) of DII. Due to inefficient cleavage of the premembrane protein, DENV suspensions consist of a mixture of mature, immature, and partially immature particles. We investigated the neutralization and binding of 22 human MAbs to DENV serotype 1 (DENV1) virions with differential maturation status. Compared with FL MAbs, DIII, DI/DII hinge, and E-dimer epitope MAbs showed higher maximum binding and avidity to mature particles relative to immature particles; this feature may contribute to the strong neutralizing potency of such MAbs. FL-specific MAbs required 57 to 87% occupancy on mature particles to achieve half-maximal neutralization (NT50), whereas the potently neutralizing MAbs achieved NT50 states at 20 to 38% occupancy. Analysis of the MAb repertoire and polyclonal sera from patients with primary DENV1 infection supports the immunodominance of cross-reactive anti-E antibodies over type-specific antibodies. After depletion with viral particles from a heterologous DENV serotype, the type-specific neutralizing antibodies remained and showed binding features shared by potent neutralizing MAbs. Taken together, these findings suggest that the use of homogeneous mature DENV particles as an immunogen may induce more potent neutralizing antibodies against DENV than the use of immature or mixed particles. IMPORTANCE With an estimated 390 million infections per year, the four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The dengue vaccine Dengvaxia was licensed; however, its low efficacy among dengue-naive individuals and increased risk of causing severe dengue in children highlight the need for a better understanding of the role of human antibodies in immunity against DENV. DENV suspensions contain mature, immature, and partially immature particles. We investigated the binding of 22 human monoclonal antibodies (MAbs) to the DENV envelope protein on particles with different maturation states. Potently neutralizing MAbs had higher relative maximum binding and avidity to mature particles than weakly neutralizing MAbs. This was supported by analysis of MAb repertoires and polyclonal sera from patients with primary DENV infection. Together, these findings suggest that mature particles may be the optimal form of presentation of the envelope protein to induce more potent neutralizing antibodies against DENV.


2021 ◽  
Author(s):  
Lisanne de Vor ◽  
Bruce van Dijk ◽  
Kok P.M. van Kessel ◽  
Jeffrey S. Kavanaugh ◽  
Carla J.C. de Haas ◽  
...  

AbstractImplant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and/or treatment of biofilm-related infections. Here we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. In a mouse model, we show that mAb 4497 (recognizing wall teichoic acid (WTA)) specifically localizes to biofilm-infected implants. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo. This is an important first step to develop mAbs for imaging or treating S. aureus biofilms.


Author(s):  
Xiangyu Chen ◽  
Ren Li ◽  
Zhiwei Pan ◽  
Chunfang Qian ◽  
Yang Yang ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel corona virus disease (COVID-19). To date, no prophylactic vaccines or approved therapeutic agents are available for preventing and treating this highly transmittable disease. Here we report two monoclonal antibodies (mAbs) cloned from memory B cells of patients recently recovered from COVID-19, and both mAbs specifically bind to the spike (S) protein of SARS-CoV-2, block the binding of receptor binding domain (RBD) of SARS-CoV-2 to human angiotensin converting enzyme 2 (hACE2), and effectively neutralize S protein-pseudotyped virus infection. These human mAbs hold the promise for the prevention and treatment of the ongoing pandemic of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document