scholarly journals Defective Neutrophil Transendothelial Migration and Lateral Motility in ARPC1B Deficiency Under Flow Conditions

2021 ◽  
Vol 12 ◽  
Author(s):  
Lanette Kempers ◽  
Evelien G. G. Sprenkeler ◽  
Abraham C. I. van Steen ◽  
Jaap D. van Buul ◽  
Taco W. Kuijpers

The actin-related protein (ARP) 2/3 complex, essential for organizing and nucleating branched actin filaments, is required for several cellular immune processes, including cell migration and granule exocytosis. Recently, genetic defects in ARPC1B, a subunit of this complex, were reported. Mutations in ARPC1B result in defective ARP2/3-dependent actin filament branching, leading to a combined immunodeficiency with severe inflammation. In vitro, neutrophils of these patients showed defects in actin polymerization and chemotaxis, whereas adhesion was not altered under static conditions. Here we show that under physiological flow conditions human ARPC1B-deficient neutrophils were able to transmigrate through TNF-α-pre-activated endothelial cells with a decreased efficiency and, once transmigrated, showed definite impairment in subendothelial crawling. Furthermore, severe locomotion and migration defects were observed in a 3D collagen matrix and a perfusable vessel-on-a-chip model. These data illustrate that neutrophils employ ARP2/3-independent steps of adhesion strengthening for transmigration but rely on ARP2/3-dependent modes of migration in a more complex multidimensional environment.

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Anuran Chatterjee ◽  
Robert Toy ◽  
Giorgio Mottola ◽  
Mian Chen ◽  
Michael S Conte

Introduction Resolution of acute inflammation is regulated by endogenous lipid mediators derived from polyunsaturated fatty acids such as docosahexaenoic acid (DHA), however little is known about mechanisms of resolution in vascular injury. We investigated the effects of the DHA-derived mediator Mar1 on VSMC phenotype responses. Methods Primary human VSMCs were obtained from saphenous vein. VSMC were pretreated with Mar1 (10-100nM) then exposed to TNF-α (10ng/ml), and inflammatory responses assessed using a monocyte adhesion (U937) assay, expression of cell adhesion molecules and pro-inflammatory molecules (qPCR, western blot, ELISA), and production of superoxide (DHE). VSMC migration was measured in a transwell assay with PDGF-AB as the agonist, and cyotskeletal changes were assessed by actin-phalloidin staining. Results Mar-1 (100 nM) reduced U937 adhesion to TNF-stimulated VSMC, VCAM-1, and pro-inflammatory cytokine (IL-6, IL-8) expression. Superoxide production measured by DHE fluorescence was reduced by 57% (p=0.002) and Nox4 expression was markedly attenuated (43%, p=0.01). Mar-1 (0.01-100nM) induced rapid cytoskeletal changes with increased cell area, and reduced VSMC migration (76%, p=0.004) to PDGF-AB (50ng/ml; Figure). Conclusions Mar-1 attenuates TNF-α inflammatory activation of VSMC, with reduction in pro-inflammatory gene expression, oxidant stress, and monocyte adhesion. Mar-1 reduces actin polymerization and inhibits VSMC chemotaxis to PDGF. Pro-resolving mediators may represent a new class of endogenous vascular therapeutics.


2015 ◽  
Vol 7 (11) ◽  
pp. 1402-1411 ◽  
Author(s):  
Yu Ling Huang ◽  
Chih-kuan Tung ◽  
Anqi Zheng ◽  
Beum Jun Kim ◽  
Mingming Wu

A novel microfluidic model reveals roles of interstitial flows in regulating tumor cell morphology and migration within a 3D collagen matrix. This work highlights the importance of biological flows in tumor cell dissemination.


2021 ◽  
pp. ASN.2020101458
Author(s):  
Sanjay Misra ◽  
Sreenivasulu Kilari ◽  
Binxia Yang ◽  
Amit Sharma ◽  
Chih-Cheng Wu ◽  
...  

BackgroundFractalkine receptor 1 (CX3CR1) mediates macrophage infiltration and accumulation, causing venous neointimal hyperplasia (VNH)/venous stenosis (VS) in arteriovenous fistula (AVF). The effect of blocking CX3CR1 using an anti–human variable VHH molecule (hCX3CR1 VHH, BI 655088) on VNH/VS was determined using a humanized mouse in which the human CX3CR1 (hCX3CR1) gene was knocked in (KI).MethodsWhole-transcriptomic RNA sequencing with bioinformatics analysis was used on human stenotic AVF samples, C57BL/6J, hCX3CR1 KI mice with AVF and CKD, and in in vitro experiments to identify the pathways involved in preventing VNH/VS formation after hCX3CR1 VHH administration.ResultsAccumulation of CX3CR1 and CD68 was significantly increased in stenotic human AVFs. In C57BL/6J mice with AVF, there was increased Cx3cr1, Cx3cl1, Cd68, and Tnf-α gene expression, and increased immunostaining of CX3CR1 and CD68. In hCX3CR1-KI mice treated with hCX3CR1 VHH molecule (KI-A), compared with vehicle controls (KI-V), there was increased lumen vessel area and patency, and decreased neointima in the AVF outflow veins. RNA-seq analysis identified TNF-α and NF-κB as potential targets of CX3CR1 inhibition. In KI-A–treated vessels compared with KI-V, there was decreased gene expression of Tnf-α, Mcp-1, and Il-1β; with reduction of Cx3cl1, NF-κB, and Cd68; decreased M1, Ly6C, smooth muscle cells, fibroblast-activated protein, fibronectin, and proliferation; and increased TUNEL and M2 staining. In cell culture, monocytes stimulated with PMA and treated with hCX3CR1 VHH had decreased TNF-α, CD68, proliferation, and migration.ConclusionsCX3CR1 blockade reduces VNH/VS formation by decreasing proinflammatory cues.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1810-1817 ◽  
Author(s):  
Annemie Collen ◽  
Roeland Hanemaaijer ◽  
Florea Lupu ◽  
Paul H. A. Quax ◽  
Natascha van Lent ◽  
...  

Adult angiogenesis, associated with pathologic conditions, is often accompanied by the formation of a fibrinous exudate. This temporary matrix consists mainly of fibrin but is intermingled with plasma proteins and collagen fibers. The formation of capillary structures in a fibrinous matrix in vivo was mimicked by an in vitro model, in which human microvascular endothelial cells (hMVECs) seeded on top of a fibrin-10% collagen matrix form capillarylike tubular structures after stimulation with basic fibroblast growth factor/tumor necrosis factor α (bFGF/TNF-α) or vascular endothelial growth factor (VEGF)/TNF-α. In the fibrin-collagen matrix the metalloproteinase inhibitor BB94 inhibited tubule formation by 70% to 80%. Simultaneous inhibition of plasmin and metalloproteinases by aprotinin and BB94 caused a nearly complete inhibition of tubule formation. Adenoviral transduction of tissue inhibitor of metalloproteinases 1 (TIMP-1) and TIMP-3 into endothelial cells revealed that TIMP-3 markedly inhibited angiogenesis, whereas TIMP-1 had only a minor effect. Immunohistochemical analysis showed the presence of matrix metalloproteinase 1 (MMP-1), MMP-2, and membrane-type 1 (MT1)–MMP, whereas MMP-9 was absent. The endothelial production of these MMPs was confirmed by antigen assays and real-time polymerase chain reaction (PCR). MT1-MMP mRNA was markedly increased in endothelial cells under conditions that induced tubular structures. The presence of MMP-1, MMP-2, and MT1-MMP was also demonstrated in vivo in the newly formed vessels of a recanalized arterial mural thrombus. These data suggest that MMPs, in particular MT-MMPs, play a pivotal role in the formation of capillarylike tubular structures in a collagen-containing fibrin matrix in vitro and may be involved in angiogenesis in a fibrinous exudate in vivo.


2004 ◽  
Vol 24 (24) ◽  
pp. 10905-10922 ◽  
Author(s):  
Matthew Grove ◽  
Galina Demyanenko ◽  
Asier Echarri ◽  
Patricia A. Zipfel ◽  
Marisol E. Quiroz ◽  
...  

ABSTRACT The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.


Author(s):  
Jade Montgomery ◽  
William J. Richardson ◽  
J. Matthew Rhett ◽  
Francis Bustos ◽  
Katherine Degen ◽  
...  

AbstractPhase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide αCT1 improves cutaneous scar appearance by 47% 9-months post-surgery – though mode-of-action remains unknown. Scar matrix structure in biopsies 2 to 6 weeks post-wounding treated topically with αCT1 or control treatments from human subjects, Sprague-Dawley rats, and IAF hairless guinea pigs were compared. The sole effect on scar structure in humans was that αCT1-treated scars had less alignment of collagen fibers relative to control wounds, a state that resembles unwounded skin. This more random alignment was recapitulated in both animal models, together with transient increases in collagen density, although the guinea pig was found to more closely replicate the pattern of response to αCT1 in human scars, compared to rat. Fibroblasts treated with αCT1 in vitro showed decreased directionality and an agent-based computational model parameterized with fibroblast motility data predicted collagen alignments in simulated scars consistent with that observed experimentally in human and the animal models. In conclusion, αCT1 prompts decreased directionality of fibroblast movement and the generation of a 3D collagen matrix post-wounding that is similar to unwounded skin – changes that correlate with long-term improvement in scar appearance.


2021 ◽  
Vol 49 (5) ◽  
pp. 125-130
Author(s):  
Ting Liu ◽  
Xi Duan ◽  
Jia He ◽  
Chuan Yang

Background: Differentially expressed lncRNAs have been reported to be involved in keratinocyte proliferation and migration, and participate in the development of psoriasis. Potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) was implicated in the pathogenesis of various diseases, including cancer, sepsis, diabetic cardiomyopathy, and atherosclerosis. The influence of KCNQ1OT1 on proliferation and migration of psoriatic keratinocytes was unfolded in this study. Methods: Human keratinocyte cell line (HaCaT) was incubated with TNF-α to establish in vitro cell model of psoriasis. Cell viability and migration were assessed by MTT and wound healing, respectively. Target miRNA of KCNQ1OT1 was identified by luciferase activity and RNA immunoprecipitation (RIP) assays. Results: KCNQ1OT1 was up-regulated in TNF-α-induced HaCaT, and knockdown of KCNQ1OT1 reduced cell viability and suppressed migration of TNF-α-induced HaCaT. KCNQ1OT1 bind to miR-183-3p and negatively regulated expression of miR-183-3p. Over-expression of GAB1 (growth factor receptor binding 2-associated binding protein 1) counteracted with the suppressive effects of KCNQ1OT1 silence on cell viability and migration of TNF-α-induced HaCaT. Conclusion: Silence of KCNQ1OT1 suppressed proliferation and migration of TNF-α-induced HaCaT through regulation of miR-183-3p/GAB1, providing potential strategy for psoriasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donghao Gan ◽  
Wenxiang Cheng ◽  
Liqing Ke ◽  
Antonia RuJia Sun ◽  
Qingyun Jia ◽  
...  

Clinical studies have shown that pirfenidone (PFD) effectively relieves joint pain in rheumatoid arthritis (RA) patients. However, the detailed mechanisms underlying the anti-RA effects of PFD have not been investigated. This study was undertaken to investigate the repurposing of PFD for the treatment of RA, and explore its anti-rheumatic mechanisms. A collagen-induced arthritis (CIA) rat model was used to observe joint pathological changes following PFD treatment. Based on bioinformatics to predict the mechanism of PFD anti-RA, using EA. hy926 and TNF-α-induced MH7A cells to establish in vitro model to explore its biological mechanism from the perspectives of synovial inflammation and angiogenesis. PFD significantly relieved pathological changes, including joint swelling, synovial hyperplasia, inflammatory cell infiltration and joint destruction. PFD was also associated with reduced expression of MMP-3 and VEGF in articular chondrocytes and synovial cells of CIA rats (p < 0.05). Using bioinformatic methods, we predicted that PFD inhibits cell inflammation and migration by interfering with the JAK2/STAT3 and Akt pathways. These results were verified using in vitro models. In particular, PFD effectively reduced the expression of pro-inflammatory, chondrogenic, and angiogenic cytokines, such as IL-1β, IL-6, IL-8, MMP-1/3/2/9 and VEGF (p < 0.05), in TNF-α-induced MH7A cells. In addition, PFD significantly reduced the production of MMP-2/9 and VEGF in EA. hy926 cells, thereby weakening migration and inhibiting angiogenesis (p < 0.05). These findings suggest that PFD may alleviate the pathological process in CIA rats, by inhibiting inflammation and angiogenesis through multiple pathways, and serve as a potential therapeutic drug for RA.


Sign in / Sign up

Export Citation Format

Share Document