Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1810-1817 ◽  
Author(s):  
Annemie Collen ◽  
Roeland Hanemaaijer ◽  
Florea Lupu ◽  
Paul H. A. Quax ◽  
Natascha van Lent ◽  
...  

Adult angiogenesis, associated with pathologic conditions, is often accompanied by the formation of a fibrinous exudate. This temporary matrix consists mainly of fibrin but is intermingled with plasma proteins and collagen fibers. The formation of capillary structures in a fibrinous matrix in vivo was mimicked by an in vitro model, in which human microvascular endothelial cells (hMVECs) seeded on top of a fibrin-10% collagen matrix form capillarylike tubular structures after stimulation with basic fibroblast growth factor/tumor necrosis factor α (bFGF/TNF-α) or vascular endothelial growth factor (VEGF)/TNF-α. In the fibrin-collagen matrix the metalloproteinase inhibitor BB94 inhibited tubule formation by 70% to 80%. Simultaneous inhibition of plasmin and metalloproteinases by aprotinin and BB94 caused a nearly complete inhibition of tubule formation. Adenoviral transduction of tissue inhibitor of metalloproteinases 1 (TIMP-1) and TIMP-3 into endothelial cells revealed that TIMP-3 markedly inhibited angiogenesis, whereas TIMP-1 had only a minor effect. Immunohistochemical analysis showed the presence of matrix metalloproteinase 1 (MMP-1), MMP-2, and membrane-type 1 (MT1)–MMP, whereas MMP-9 was absent. The endothelial production of these MMPs was confirmed by antigen assays and real-time polymerase chain reaction (PCR). MT1-MMP mRNA was markedly increased in endothelial cells under conditions that induced tubular structures. The presence of MMP-1, MMP-2, and MT1-MMP was also demonstrated in vivo in the newly formed vessels of a recanalized arterial mural thrombus. These data suggest that MMPs, in particular MT-MMPs, play a pivotal role in the formation of capillarylike tubular structures in a collagen-containing fibrin matrix in vitro and may be involved in angiogenesis in a fibrinous exudate in vivo.

Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 601-606 ◽  
Author(s):  
Carolyn A. Staton ◽  
Nicola J. Brown ◽  
Gary R. Rodgers ◽  
Kevin P. Corke ◽  
Simon Tazzyman ◽  
...  

Abstract Angiogenesis, the development of new blood vessels from existing vasculature, is crucial for the development and metastasis of solid tumors. Here, we show for the first time that a 24–amino acid peptide derived from the amino terminus of the alpha chain of human fibrinogen (termed “alphastatin”) has potent antiangiogenic properties, inhibiting both the migration and tubule formation of human dermal microvascular endothelial cells in response to vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) in vitro. Moreover, alphastatin markedly inhibits the growth of tumors in a syngeneic murine model. Tumors from mice receiving daily injections of alphastatin for 12 days exhibited large areas of intravascular disruption and thrombosis with substantial cellular necrosis. Importantly, alphastatin administration had no detectable effect on vessels in such normal tissues as liver, lungs, and kidney. Taken together, these data indicate that alphastatin is a potent new antiangiogenic agent in vitro and antivascular agent in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3228-3235 ◽  
Author(s):  
A. Zakrzewicz ◽  
M. Gräfe ◽  
D. Terbeek ◽  
M. Bongrazio ◽  
W. Auch-Schwelk ◽  
...  

Abstract To characterize L-selectin–dependent cell adhesion to human vascular endothelium, human cardiac microvascular endothelial cells (HCMEC) and human coronary endothelial cells (HCEC) were isolated from explanted human hearts. The adhesion behavior of human (NALM-6) and mouse (300.19) pre-B cells transfected with cDNA encoding for human L-selectin was compared with that of the respective nontransfected cells in a flow chamber in vitro. More than 80% of the adhesion to tumor necrosis factor-α (TNF-α)–stimulated HCMEC at shear stresses <2 dyne/cm2 was L-selectin dependent and could be equally well blocked by an anti–L-selectin antibody or a L-selectin-IgG-chimera. No L-selectin dependent adhesion to HCEC could be shown. The L-selectin dependent adhesion to HCMEC was insensitive to neuraminidase, but greatly inhibited by addition of NaClO3 , which inhibits posttranslational sulfation and remained elevated for at least 24 hours of stimulation. E-selectin dependent adhesion of HL60 cells to HCMEC was blocked by neuraminidase, but not by NaClO3 and returned to control levels within 18 hours of HCMEC stimulation. It is concluded that microvascular, but not macrovascular endothelial cells express TNF-α–inducible sulfated ligand(s) for L-selectin, which differ from known L-selectin ligands, because sialylation is not required. The prolonged time course of L-selectin dependent adhesion suggests a role in sustained leukocyte recruitment into inflammatory sites in vivo.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2729 ◽  
Author(s):  
Melo ◽  
Luzo ◽  
Lana ◽  
Santana

Leukocyte and platelet-rich plasma (L-PRP) is an autologous product that when activated forms fibrin nanofibers, which are useful in regenerative medicine. As an important part of the preparation of L-PRP, the centrifugation parameters may affect the release of soluble factors that modulate the behavior of the cells in the nanofibers. In this study, we evaluated the influences of four different centrifugation conditions on the concentration of platelets and leukocytes in L-PRP and on the anabolic/catabolic balance of the nanofiber microenvironment. Human adipose-derived mesenchymal stem cells (h-AdMSCs) were seeded in the nanofibers, and their viability and growth were evaluated. L-PRPs prepared at 100× g and 100 + 400× g released higher levels of transforming growth factor (TGF)-β1 and platelet-derived growth factor (PDGF)-BB due to the increased platelet concentration, while inflammatory cytokines interleukin (IL)-8 and tumor necrosis factor (TNF)-α were more significantly released from L-PRPs prepared via two centrifugation steps (100 + 400× g and 800 + 400× g) due to the increased concentration of leukocytes. Our results showed that with the exception of nanofibers formed from L-PRP prepared at 800 + 400× g, all other microenvironments were favorable for h-AdMSC proliferation. Here, we present a reproducible protocol for the standardization of L-PRP and fibrin nanofibers useful in clinical practices with known platelet/leukocyte ratios and in vitro evaluations that may predict in vivo results.


1989 ◽  
Vol 109 (2) ◽  
pp. 811-822 ◽  
Author(s):  
P L McNeil ◽  
L Muthukrishnan ◽  
E Warder ◽  
P A D'Amore

Growth factors may be required at sites of mechanical injury and normal wear and tear in vivo, suggesting that the direct action of mechanical forces on cells could lead to growth factor release. Scraping of cells from the tissue culture substratum at 37 degrees C was used to test this possibility. We show that scraping closely mimics in vitro both the transient plasma membrane wounds observed in cells subject to mechanical forces in vivo (McNeil, P. L., and S. Ito. 1989. Gastroenterology. 96:1238-1248) and the transient plasma membrane wounds shown here to occur in endothelial cells under normal culturing conditions. Scraping of endothelial cells from the culturing substratum released into the culture medium a potent growth-promoting activity for Swiss 3T3 fibroblasts. Growth-promoting activity was released rapidly (within 5 min) after scraping but was not subsequently degraded by the endothelial cells for at least 24 h thereafter. A greater quantity of growth-promoting activity was released by cells scraped 4 h after plating than by those scraped 4 or 7 d afterwards. Thus release is not due to scraping-induced disruption of extracellular matrix. Release was only partially cold inhibitable, was poorly correlated with the level of cell death induced by scraping, and did not occur when cells were killed with metabolic poisons. These results suggest that mechanical disruption of plasma membrane, either transient or permanent, is the essential event leading to release. A basic fibroblast growth factor-like molecule and not platelet-derived growth factor appears to be partially responsible for the growth-promoting activity. We conclude that one biologically relevant route of release of basic fibroblast growth factor, a molecule which lacks the signal peptide sequence for transport into the endoplasmic reticulum, could be directly through mechanically induced membrane disruptions of endothelial cells growing in vivo and in vitro.


1996 ◽  
Vol 270 (1) ◽  
pp. H411-H415 ◽  
Author(s):  
L. Morbidelli ◽  
C. H. Chang ◽  
J. G. Douglas ◽  
H. J. Granger ◽  
F. Ledda ◽  
...  

Vascular endothelial growth factor (VEGF) is a secreted protein that is a specific growth factor for endothelial cells. We have recently demonstrated that nitric oxide (NO) donors and vasoactive peptides promoting NO-mediated vasorelaxation induce angiogenesis in vivo as well as endothelial cell growth and motility in vitro; in contrast, inhibitors of NO synthase suppress angiogenesis. In this study we investigated the role of NO in mediating the mitogenic effect of VEGF on cultured microvascular endothelium isolated from coronary postcapillary venules. VEGF induced a dose-dependent increase in cell proliferation and DNA synthesis. The role of NO was determined by monitoring proliferation or guanosine 3',5'-cyclic monophosphate (cGMP) levels in the presence and absence of NO synthase blockers. The proliferative effect evoked by VEGF was reduced by pretreatment of the cells with NO synthase inhibitors. Exposure of the cells to VEGF induced a significant increment in cGMP levels. This effect was potentiated by superoxide dismutase addition and was abolished by NO synthase inhibitors. VEGF stimulates proliferation of postcapillary endothelial cells through the production of NO and cGMP accumulation.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4039-4045
Author(s):  
Giovanni Bernardini ◽  
Gaia Spinetti ◽  
Domenico Ribatti ◽  
Grazia Camarda ◽  
Lucia Morbidelli ◽  
...  

Several chemokines have been shown to act as angiogenic molecules or to modulate the activity of growth factors such as fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF). The detection of the CC chemokine receptor (CCR) 8 message in human umbilical vein endothelial cells (HUVECs) by reverse transcription– polymerase chain reaction (RT-PCR) and RNase protection assay (RPA), prompted us to investigate the potential role exerted by the CC chemokine I-309, a known ligand of such receptor, in both in vitro and in vivo angiogenesis assays. We show here that I-309 binds to endothelial cells, stimulates chemotaxis and invasion of these cells, and enhances HUVEC differentiation into capillary-like structures in an in vitro Matrigel assay. Furthermore, I-309 is an inducer of angiogenesis in vivo in both the rabbit cornea and the chick chorioallantoic membrane assay (CAM).


1998 ◽  
Vol 4 (S2) ◽  
pp. 1100-1101
Author(s):  
Ranan Gullhan Aktas ◽  
Robert J. Kayton

Basic fibroblast growth factor (bFGF) is a potent angiogenic polypeptide. It promotes angiogenesis in vivo and in vitro by stimulating migration, proliferation and proteolytic activity of endothelial cells. Whereas several effects of exogenous bFGF on endothelial cells have been described, it has remained unclear how endogenous bFGF produced by vascular endothelial cells regulate angiogenesis.To further investigate functional implications of the distribution of bFGF, we undertook the present study. Our aims were (i) to identify the specific location of bFGF in endothelial cells using electron microscopy immunogold labeling technique (ii) to determine the distribution of bFGF in capillaries of different types of tissues.Tissue samples from sciatic nerve, hippocampus, adrenal gland and kidney of normal adult rats were fixed in 4% paraformaldehyde/1 to 5% glutaraldehyde and embedded in Spurr's resin. Ultrathin sections were labeled with either polyclonal (F3393-Sigma) or monoclonal antibodies (F6162-Sigma, C3316-ZymoGenetics) specific for bFGF using a two-step immunogold labeling method.


Sign in / Sign up

Export Citation Format

Share Document