scholarly journals Integrative Transcriptomic Analysis Reveals the Immune Mechanism for a CyHV-3-Resistant Common Carp Strain

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiying Jia ◽  
Nan Wu ◽  
Xiaona Jiang ◽  
Heng Li ◽  
Jiaxin Sun ◽  
...  

Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.

2020 ◽  
Author(s):  
Zhiying Jia ◽  
Nan Wu ◽  
Xiaona Jiang ◽  
Heng Li ◽  
Jiaxin Sun ◽  
...  

ABSTRACTAnti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Mortality studies suggested that a breeding strain of common carp is resistant to this disease. This study illustrates the immune mechanisms involved in anti-CyHV-3 ability. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was also performed. Tissues from the head kidney of common carp were extracted at day 0 (the healthy control) and day 7 after CyHV-3 infection (the survivors), and used to analyze the transcriptome through both Illumina and Pac-bio sequencing. Following analysis of the Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology terms involved, the immune-related genes were merged. These genes were filtered using the current common carp immune gene library, and information on the immune process was detailed. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used for the regulation of immune genes lncRNA. The results demonstrated that the breeding carp strain develops marked resistance to CyHV-3 through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and mucin 3 (MUC3). Moreover, the immune suppressive signals, such as suppression of interleukin 21 receptor (IL21R) on STAT3, PI3K mediated the inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLR family CARD domain containing 3 (NLRC3) on STING during a steady state. Possible susceptible factors for CyHV-3, such as integrin beta 1 (ITGB1), toll-like receptor 18 (TLR18), and C-C motif chemokine ligand 4 (CCL4), were also revealed from the common strain. The results of this study suggested that the regulation of galectin 3 (LGALS3) and T cell leukemia homeobox 3 (TLX3) by lncRNA may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.


2018 ◽  
Author(s):  
David Reher ◽  
Felix M. Key ◽  
Aida M. Andrés ◽  
Janet Kelso

Genome-wide analyses of two Neandertals and a Denisovan have shown that these archaic humans had lower genetic heterozygosity than present-day people. A similar reduction in genetic diversity of protein-coding genes (gene diversity) was found in exome sequences of three Neandertals. Reduced gene diversity, and particularly in genes involved in immunity, may have important functional consequences. In fact, it has been suggested that reduced diversity in immune genes may have contributed to Neandertal extinction. We therefore explored gene diversity in different human groups and at different time points on the Neandertal lineage with a particular focus on the diversity of genes involved in innate immunity and genes of the Major Histocompatibility Complex (MHC).We find that the two Neandertals and the Denisovan have similar gene diversity, both significantly lower than any present-day human. This is true across gene categories, with no gene set showing an excess decrease in diversity compared to the genome-wide average. Innate immune-related genes show a similar reduction in diversity to other genes, both in present-day and archaic humans. There is also no observable decrease in gene diversity over time in Neandertals, suggesting that there may have been no ongoing reduction in gene diversity in later Neandertals, although this needs confirmation with a larger sample size. In both archaic and present-day humans, genes with the highest levels of diversity are enriched for MHC-related functions. In fact, in archaic humans the MHC genes show evidence of having retained more diversity than genes involved only in the innate immune system.


2019 ◽  
Author(s):  
Chao Tong ◽  
Miao Li ◽  
Kai Zhao

AbstractRecent genome-wide studies have begun to elucidate the genomic basis of hypoxia, long-term cold and high saline and alkaline adaptation in highland fish, and a number of key genes contributed to its highland adaptation were identified. An increasing number of studies indicated that immune genes of Tibetan endemic fish species underwent positive selection towards functional shift, while the insight into immune gene repertoire of Tibetan highland fishes from genome-wide studies has largely lagged behind. In this study, we performed one of the first comparative genomics study in particular focusing on the signatures of immune genes in a highland fish, Gymnocypris przewalskii based on immune-relevant tissue transcriptome assemblies. We identified seven putative rapidly evolving immune genes with elevated molecular evolutionary rate (dN/dS) relative to lowland fish species. Using tissue-transcriptome data, we found most of rapidly evolving immune genes were broadly expressed in head-kidney, spleen, gills and skin tissues, which significantly enriched for complement activation and inflammatory response processes. In addition, we found a set of complement activation related genes underwent accelerated evolution and showed consistently repressed expression patterns in response to parasite Ichthyophthirius multifiliis infection. Moreover, we detected a number of immune genes involved in adaptive immune system exhibited distinct signature of upregulated expression patterns after parasite infection. Taken together, this study provided putative transcriptomic signatures of rapidly evolving immune genes, and will gain the insight into Schizothoracine fish adaptation to high-altitude extreme aquatic environments including diversified pathogen challenge.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Chen ◽  
Yuxiang Dong ◽  
Yitong Pan ◽  
Yuhan Zhang ◽  
Ping Liu ◽  
...  

Abstract Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009552
Author(s):  
Holly L. Nichols ◽  
Elliott B. Goldstein ◽  
Omid Saleh Ziabari ◽  
Benjamin J. Parker

Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiontRegiella insecticola(but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from theTrifoliumbiotype are strongly associated withRegiella. Using RNAseq, we compare patterns of gene expression in response toRegiellain aphid genotypes from multiple biotypes, and we show thatTrifoliumaphids experience no downregulation of immune gene expression while hostingRegiellaand harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system,Regiellasymbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence ofRegiellahave been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes.


2020 ◽  
Author(s):  
tiefeng cao ◽  
huimin shen

Abstract Background:Chemotherapeutic resistance is responsible for treatment failure. Immunotherapy is important in ovarian cancer (OC). Systematic exploration of immunogenic landscape and reliable immune gene-based prognostic biomarkers or signature is necessary to be identified. This study aims to identify the immune gene-based prognostic biomarkers and regulatory factors, further to develop an individualized prediction signature.Methods: This study systematically explored the gene expression profiles from RNA-seq data set for The Cancer Genome Atlas (TCGA) ovarian cancer. Differentially expressed and survival-associated immune genes and transcription factors (TFs) were identified using immune genes from ImmPort dataset and TFs from Cistoma database. We developed the prognostic signature based on survival associated immune genes with LASSO (Least absolute shrinkage and selection operator) Cox regression analysis. Further, Network analysis was performed to uncover the potential molecular mechanisms of immune-related genes with the help of computational biology. Results: The prognostic signature, a weighted combination of the 21 immune-related genes, performed moderately in survival prediction with AUC was 0.746, 0.735, and 0.749 for 1, 3, and 5 year overall survival, respectively. Network analysis uncovered the regulatory role of TFs in immune genes. Intriguingly, the prognostic signature reflected infiltration of some immune cell subtypes.Conclusions: We first constructed a signature with 21 immune genes of clinical significance, which showed promising predictive value in the surveillance, prognosis, even immunotherapy response of OC patients.


2018 ◽  
Vol 62 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Barbara Kazuń ◽  
Joanna Małaczewska ◽  
Krzysztof Kazuń ◽  
Joanna Żylińska-Urban ◽  
Andrzej K. Siwicki

AbstractIntroduction: Immune-potentiating functions of Lactobacillus plantarum strains in the common carp were evaluated.Material and Methods: Fourteen days of feeding fish dry diet supplemented with the bacteria provided parameters of nonspecific humoral immunity (lysozyme, ceruloplasmin, γ-globulin, total protein levels, and serum bactericidal activity) and cellular immunity (pinocytosis, respiratory burst activity, and potential killing activity of organ phagocytes), as well as the proliferative response of organ lymphocytes stimulated with mitogens. The resistance of fish to infection with Aeromonas hydrophila was also determined.Results: Dietary supplementation with L. plantarum had a substantial influence on the activity of organ phagocytes, especially the potential killing activity of head kidney cells. A significant increase in the proliferative activity of LPS-stimulated B lymphocytes and in the levels of γ-globulins and total protein was observed. The supplemented diet conveyed higher resistance than the control diet as the cumulative fish mortalities after infection with A. hydrophila were 65% and 85%, respectively.Conclusion: The results indicate that dietary supplementation with L. plantarum stimulates the antibacterial resistance of common carp and may reinforce defence against bacterial infections, but further studies need to be conducted.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi261-vi261
Author(s):  
Cynthia Kassab ◽  
Daniel Zamler ◽  
Pravesh Gupta ◽  
Visish Srinivasan ◽  
Ganesh Rao ◽  
...  

Abstract Previous immune profiling in brain tumors has mostly focused on the high-density tumor areas, and as such, little is known about the nature and types of immunological responses that occur across the tumor landscape, including at the tumor-central nervous system (CNS) interface. En bloc resections of glioblastomas (n=10) and CNS lung metastases (n=10) were oriented on slides as whole mount wedges spanning three anatomical areas including the invasive edge, tumor region, and necrotic core. Tumor segmentation was performed and regional differences were immunologically analyzed for 770 immune genes using the NanoString nCounter System with CIBERSORT analysis to delineate immune gene signatures. The analysis was validated using multiplex immunohistochemistry (IHC). The top upregulated immune genes in the GBM necrotic core were associated with macrophages, including the CD163 lineage marker, chemotactic factors (such as CCL18 and SAA1), and the phagocytosis stimulatory factors (such as IL-8 and MARCO). The necrotic core downregulates GBM antigens (such as IL13RA2 and MAGEB2), markers of dendritic cells (such as LILRA4), and immune stimulatory processes including MHC, IFN, IL-12, TNF, and ICOS expression. In direct contrast, the infiltrating edge of the GBM relative to the tumor is enriched with stimulators for NK cytotoxicity (i.e., CD244, the fractalkine receptor for immune cells), chemokines for thymocytes and dendritic cells, and immune stimulatory IL-12 receptors. Glioblastoma has rare focal isolated areas of CD3 T-cell reactivity within the tumor. Similar to GBM, the necrotic center of lung metastases is enriched in immune suppressive macrophages, as reflected by CD163 IHC staining and arginase expression; however, they are more frequently infiltrated with M1 macrophages. Yet the majority of lung cancers are more diffusely infiltrated with CD3 T cells, especially at the infiltrating edge. In general, we noted distinct inter- and intratumoral immune gene signatures, with macrophages dominating the brain tumors, especially the necrotic core.


2020 ◽  
Vol 287 (1933) ◽  
pp. 20201184
Author(s):  
Richard D. Horak ◽  
Sean P. Leonard ◽  
Nancy A. Moran

The gut microbiome plays a critical role in the health of many animals. Honeybees are no exception, as they host a core microbiome that affects their nutrition and immune function. However, the relationship between the honeybee immune system and its gut symbionts is poorly understood. Here, we explore how the beneficial symbiont Snodgrassella alvi affects honeybee immune gene expression. We show that both live and heat-killed S. alvi protect honeybees from the opportunistic pathogen Serratia marcescens and lead to the expression of host antimicrobial peptides . Honeybee immune genes respond differently to live S. alvi compared to heat-killed S. alvi, the latter causing a more extensive immune expression response. We show a preference for Toll pathway upregulation over the Imd pathway in the presence of both live and heat-killed S. alvi . Finally, we find that live S. alvi aids in clearance of S. marcescens from the honeybee gut, supporting a potential role for the symbiont in colonization resistance. Our results show that colonization by the beneficial symbiont S. alvi triggers a replicable honeybee immune response. These responses may benefit the host and the symbiont, by helping to regulate gut microbial members and preventing overgrowth or invasion by opportunists.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 889 ◽  
Author(s):  
West ◽  
Watts ◽  
Smith ◽  
Zhang ◽  
Besseling-van der Vaart ◽  
...  

Probiotic supplementation for eight weeks with a multi-strain probiotic by individuals with allergic rhinitis (AR) reduced overall symptom severity, the frequency of medication use and improved quality of life. The purported mechanism of action is modulation of the immune system. This analysis examined changes in systemic and mucosal immune gene expression in a subgroup of individuals, classified as either responders or non-responders based on improvement of AR symptoms in response to the probiotic supplement. Based on established criteria of a beneficial change in the mini-rhinoconjunctivitis quality of life questionnaire (mRQLQ), individuals with AR were classified as either responders or non-responders. Systemic and mucosal immune gene expression was assessed using nCounter PanCancer Immune Profiling (Nanostring Technologies, Seattle, WA, USA) kit on blood samples and a nasal lysate. There were 414 immune genes in the blood and 312 immune genes in the mucosal samples expressed above the background threshold. Unsupervised hierarchical clustering of immune genes separated responders from non-responders in blood and mucosal samples at baseline and after supplementation, with key T-cell immune genes differentially expressed between the groups. Striking differences in biological processes and pathways were evident in nasal mucosa but not blood in responders compared to non-responders. These findings support the use of network approaches to understand probiotic-induced changes to the immune system.


Sign in / Sign up

Export Citation Format

Share Document