scholarly journals Identification of Methylation Immune Subtypes and Establishment of a Prognostic Signature for Gliomas Using Immune-Related Genes

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengang Hu ◽  
Hao Zhang ◽  
Fan Fan ◽  
Zeyu Wang ◽  
Jiahao Xu ◽  
...  

DNA methylation patterns are essential in understanding carcinogenesis. However, the relationship between DNA methylation and the immune process has not been clearly established—this study aimed at elucidating the interaction between glioma and DNA methylation, consolidating glioma classification and prognosis. A total of 2,483 immune-related genes and 24,556 corresponding immune-related methylation probes were identified. From the Cancer Genome Atlas (TCGA) glioma cohort, a total of 683 methylation samples were stratified into two different clusters using unsupervised clustering, and eight types of other cancer samples from the TCGA database were shown to exhibit excellent distributions. A total of 3,562 differentially methylated probes (DMPs) were selected and used for machine learning. A five-probe signature was established to evaluate the prognosis of glioma as well as the potential benefits of radiotherapy and Procarbazine, CCNU, Vincristine (PCV) treatment. Other prognostic clinical models, such as nomogram and decision tree, were also evaluated. Our findings confirmed the interactions between immune-related methylation patterns and glioma. This novel approach for cancer molecular characterization and prognosis should be validated in further studies.

2021 ◽  
Author(s):  
Jennifer Lu ◽  
Darren Korbie ◽  
Matt Trau

DNA methylation is one of the most commonly studied epigenetic biomarkers, due to its role in disease and development. The Illumina Infinium methylation arrays still remains the most common method to interrogate methylation across the human genome, due to its capabilities of screening over 480, 000 loci simultaneously. As such, initiatives such as The Cancer Genome Atlas (TCGA) have utilized this technology to examine the methylation profile of over 20,000 cancer samples. There is a growing body of methods for pre-processing, normalisation and analysis of array-based DNA methylation data. However, the shape and sampling distribution of probe-wise methylation that could influence the way data should be examined was rarely discussed. Therefore, this article introduces a pipeline that predicts the shape and distribution of normalised methylation patterns prior to selection of the most optimal inferential statistics screen for differential methylation. Additionally, we put forward an alternative pipeline, which employed feature selection, and demonstrate its ability to select for biomarkers with outstanding differences in methylation, which does not require the predetermination of the shape or distribution of the data of interest. Availability: The Distribution test and the feature selection pipelines are available for download at: https://github.com/uqjlu8/DistributionTest Keywords: DNA methylation, Biomarkers, Cancers, Data Distribution, TCGA, 450K


2021 ◽  
Author(s):  
Dylane Detilleux ◽  
Yannick G Spill ◽  
Delphine Balaramane ◽  
Michaël Weber ◽  
Anaïs Flore Bardet

ABSTRACTAberrant DNA methylation has emerged as a hallmark of cancer cells and profiling their epigenetic landscape has widely been carried out in many types of cancer. However, the mechanisms underlying changes in DNA methylation remain elusive. Transcription factors, initially thought to be repressed from binding by DNA methylation, have recently emerged as potential drivers of DNA methylation patterns. Here we perform a rigorous bioinformatic analysis integrating the massive amount of data available from The Cancer Genome Atlas to identify transcription factors driving aberrant DNA methylation. We predict TFs known to be involved in cancer as well as novel candidates to drive hypo-methylated regions such as FOXA1 and GATA3 in breast cancer, FOXA1 and TWIST1 in prostate cancer and NFE2L2 in lung cancer. We also predict TFs that lead to hyper-methylated regions upon TF loss such as EGR1 in several cancer types. Finally, we validate experimentally that FOXA1 and GATA3 mediate hypo-methylated regions in breast cancer cells. Our work shows the importance of TFs as upstream regulators shaping DNA methylation patterns in cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Meiwei Mu ◽  
Yi Tang ◽  
Zheng Yang ◽  
Yuling Qiu ◽  
Xiaohong Li ◽  
...  

Objective. To explore the expression of immune-related lncRNAs in colon adenocarcinoma and find out the effect on how these lncRNAs influence the development and prognosis of colon adenocarcinoma. Method. Transcriptome data of colon adenocarcinoma from The Cancer Genome Atlas (TCGA) were downloaded, and gene sets “IMMUNE RESPONSE” and “IMMUNE SYSTEM PROCESS” were sought from the Molecular Signatures Database (MSigDB). The expression of immune-related genes was extracted that were immune-related mRNAs. Then, the immune-related lncRNAs were sought out by utilizing of the above data. Clinical traits were combined with immune-related lncRNAs, so that prognostic-related lncRNAs were identified by Cox regression. Multivariate Cox regression was built to calculate risk scores. Relationships between clinical traits and immune-related lncRNAs were also calculated. Result. A total of 480 colorectal adenocarcinoma patients and 41 normal control patients’ transcriptome sequencing data of tissue samples were obtained from TCGA database. 918 immune-related lncRNAs were screened. Cox regression showed that 34 immune-related lncRNAs were associated with colon adenocarcinoma prognosis. Seven lncRNAs were independent risk factors. Conclusion. This study revealed that some lncRNAs can affect the development and prognosis of colon adenocarcinoma. It may provide new theory evidence of molecular mechanism for the future research and molecular targeted therapy of colon adenocarcinoma.


2021 ◽  
Author(s):  
Xiao-Cheng Wang ◽  
Ya Liu ◽  
Fei-Wu Long ◽  
Liang-Ren Liu ◽  
Chuan-Wen Fan

Background: The relationship between long noncoding RNAs (lncRNAs) and the mRNA stemness index (mRNAsi) in colorectal cancer (CRC) is still unclear. Materials & methods: The mRNAsi, mRNAsi-related lncRNAs and their clinical significance were analyzed by bioinformatic approaches in The Cancer Genome Atlas (TCGA)-COREAD dataset. Results: mRNAsi was negatively related to pathological features but positively related to overall survival and recurrence-free survival in CRC. A five mRNAsi-related lncRNAs prognostic signature was further developed and showed independent prognostic factors related to overall survival in CRC patients, due to the five mRNAsi-related lncRNAs involved in several pathways of the cancer stem cells and malignant cancer cell phenotypes. Conclusion: The present study highlights the potential roles of mRNAsi-related lncRNAs as alternative prognostic markers.


2021 ◽  
Author(s):  
Jun Du ◽  
Jinguo Wang

Abstract Background: The expression and molecular mechanism of cysteine rich transmembrane module containing 1 (CYSTM1) in human tumor cells remains unclear. The aim of this study was to determine whether CYSTM1 could be used as a potential prognostic biomarker for hepatocellular carcinoma (HCC).Methods: We first demonstrated the relationship between CYSTM1 expression and HCC in various public databases. Secondly, Kaplan–Meier analysis and Cox proportional hazard regression model were performed to evaluate the relationship between the expression of CYSTM1 and the survival of HCC patients which data was downloaded in the cancer genome atlas (TCGA) database. Finally, we used the expression data of CYSTM1 in TCGA database to predict CYSTM1-related signaling pathways through bioinformatics analysis.Results: The expression level of CYSTM1 in HCC tissues was significantly correlated with T stage (p = 0.039). In addition, Kaplan–Meier analysis showed that the expression of CYSTM1 was significantly associated with poor prognosis in patients with early-stage HCC (p = 0.003). Multivariate analysis indicated that CYSTM1 is a potential predictor of poor prognosis in HCC patients (p = 0.036). The results of biosynthesis analysis demonstrated that the data set of CYSTM1 high expression was mainly enriched in neurodegeneration and oxidative phosphorylation pathways.Conclusion: CYSTM1 is an effective biomarker for the prognosis of patients with early-stage HCC and may play a key role in the occurrence and progression of HCC.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Wei Han ◽  
Biao Huang ◽  
Xiao-Yu Zhao ◽  
Guo-Liang Shen

Abstract Skin cutaneous melanoma (SKCM) is one of the most deadly malignancies. Although immunotherapies showed the potential to improve the prognosis for metastatic melanoma patients, only a small group of patients can benefit from it. Therefore, it is urgent to investigate the tumor microenvironment in melanoma as well as to identify efficient biomarkers in the diagnosis and treatments of SKCM patients. A comprehensive analysis was performed based on metastatic melanoma samples from the Cancer Genome Atlas (TCGA) database and ESTIMATE algorithm, including gene expression, immune and stromal scores, prognostic immune-related genes, infiltrating immune cells analysis and immune subtype identification. Then, the differentially expressed genes (DEGs) were obtained based on the immune and stromal scores, and a list of prognostic immune-related genes was identified. Functional analysis and the protein–protein interaction network revealed that these genes enriched in multiple immune-related biological processes. Furthermore, prognostic genes were verified in the Gene Expression Omnibus (GEO) databases and used to predict immune infiltrating cells component. Our study revealed seven immune subtypes with different risk values and identified T cells as the most abundant cells in the immune microenvironment and closely associated with prognostic outcomes. In conclusion, the present study thoroughly analyzed the tumor microenvironment and identified prognostic immune-related biomarkers for metastatic melanoma.


2017 ◽  
Vol 1 (6) ◽  
pp. 328-333 ◽  
Author(s):  
Michelle L. Wright ◽  
Yunfeng Huang ◽  
Qin Hui ◽  
Kevin Newhall ◽  
Cindy Crusto ◽  
...  

IntroductionGeneral life stress has been associated with altered DNA methylation in individuals of African Ancestry, although the relationship between parenting stress and DNA methylation has not been described. The purpose of this study was to examine the relationship between maternal parenting stress and DNA methylation among African Ancestry mother-child dyads.MethodsWe evaluated epigenome-wide DNA methylation relative to parenting stress in 74 mother-child dyads using linear mixed models.ResultsSignificant variation in maternal DNA methylation at 95 CpG sites was associated with level of parenting stress. Notably, we identified a change in DNA methylation associated with poly (ADP-ribose) polymerase-1, which plays a key role in stress signaling. We did not identify any significant variation in child DNA methylation related to maternal parenting stress.ConclusionsHowever, DNA methylation patterns observed in children mirrored patterns observed in their mothers. The results suggest that differential maternal DNA methylation is associated with higher levels of parenting stress.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Kong ◽  
Christopher M. Rose ◽  
Ashley A. Cass ◽  
Alexander G. Williams ◽  
Martine Darwish ◽  
...  

AbstractProfound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1810 ◽  
Author(s):  
Joe Ibrahim ◽  
Ken Op de Beeck ◽  
Erik Fransen ◽  
Marc Peeters ◽  
Guy Van Camp

Due to the elevated rates of incidence and mortality of cancer, early and accurate detection is crucial for achieving optimal treatment. Molecular biomarkers remain important screening and detection tools, especially in light of novel blood-based assays. DNA methylation in cancer has been linked to tumorigenesis, but its value as a biomarker has not been fully explored. In this study, we have investigated the methylation patterns of the Gasdermin E gene across 14 different tumor types using The Cancer Genome Atlas (TCGA) methylation data (N = 6502). We were able to identify six CpG sites that could effectively distinguish tumors from normal samples in a pan-cancer setting (AUC = 0.86). This combination of pan-cancer biomarkers was validated in six independent datasets (AUC = 0.84–0.97). Moreover, we tested 74,613 different combinations of six CpG probes, where we identified tumor-specific signatures that could differentiate one tumor type versus all the others (AUC = 0.79–0.98). In all, methylation patterns exhibited great variation between cancer and normal tissues, but were also tumor specific. Our analyses highlight that a Gasdermin E methylation biomarker assay, not only has the potential for being a methylation-specific pan-cancer detection marker, but it also possesses the capacity to discriminate between different types of tumors.


Sign in / Sign up

Export Citation Format

Share Document