scholarly journals A Potential Probiotic for Diarrhea: Clostridium tyrobutyricum Protects Against LPS-Induced Epithelial Dysfunction via IL-22 Produced By Th17 Cells in the Ileum

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiping Xiao ◽  
Lujie Liu ◽  
Xun Pei ◽  
Wanjing Sun ◽  
Yuyue Jin ◽  
...  

Probiotics are clinically used for diarrhea and inflammatory bowel diseases in both humans and animals. Previous studies have shown that Clostridium tyrobutyricum (Ct) protects against intestinal dysfunction, while its regulatory function in the gut needs further investigation and the related mechanisms are still not fully elucidated. This study aims to further verify the protective function of Ct and reveal its underlying mechanisms in alleviating diarrhea and intestinal inflammation. Ct inhibited LPS-induced diarrhea and intestinal inflammation in the ileum. IL-22 was identified and the protective role of Ct in the ileum presented an IL-22-dependent manner according to the transcriptomic analysis and in vivo interference mice experiments. The flow cytometric analysis of immune cells in the ileum showed that Ct enhanced the proportions of Th17 cells in response to LPS. The results of in situ hybridization further verified that Ct triggered Th17 cells to produce IL-22, which combined with IL-22RA1 expressed in the epithelial cells. Moreover, Ct was unable to enhance the levels of short-chain fatty acids (SCFAs) in the ileum, suggesting that the protective role of Ct in the ileum was independent of SCFAs. This study uncovered the role of Ct in alleviating diarrhea and inflammation with the mechanism of stimulating Th17 cells in the lamina propria to produce IL-22, highlighting its potential application as a probiotic for diarrhea and inflammation in the ileum.

Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 215
Author(s):  
Zhiping Xiao ◽  
Lujie Liu ◽  
Yuyue Jin ◽  
Xun Pei ◽  
Wanjing Sun ◽  
...  

This study aimed to investigate the effects of Clostridium tyrobutyricum (C. tyrobutyricum) on colonic immunity and the role of IL-22 in the protective function of C. tyrobutyricum. Mice were supplemented with 108 CFU/mL C. tyrobutyricum daily for 20 days, followed by injecting with LPS for 24 h. In vivo interference of IL-22 via injecting with an adeno-associated virus was conducted to elucidate the role of IL-22 in C. tyrobutyricum attenuating colonic inflammation. The results showed that C. tyrobutyricum decreased the mRNA expression of IL-6 and IL-1β. C. tyrobutyricum enhanced the mRNA expression of IL-22 and the expression of MUC2 in the colon. The in vivo interference results showed that C. tyrobutyricum enhanced the mRNA expression of IL-6 and IL-1β while decreased the expression of MUC2 after knocking down IL-22. The flow cytometric analysis showed that C. tyrobutyricum decreased the proportions of macrophages, DCs, and mast cells and effectively regulated the proportion of Th17 cells, indicating that C. tyrobutyricum may stimulate the expression of IL-22 via regulating Th17 cells. Our study concluded that C. tyrobutyricum protected against LPS-induced colonic barrier dysfunction and inflammation via IL-22 signaling, suggesting that C. tyrobutyricum could be a potential probiotic in regulating colonic health.


1994 ◽  
Vol 267 (6) ◽  
pp. G1135-G1141 ◽  
Author(s):  
J. Nishida ◽  
R. S. McCuskey ◽  
D. McDonnell ◽  
E. S. Fox

Nitric oxide (NO) has been reported to have a protective function in attenuating hepatic injury during endotoxemia or sepsis. As a result, the role of NO in attenuating the hepatic microcirculatory alterations associated with endotoxemia was investigated in mice by in vivo microscopy. The livers were examined 2 h after intravenous injection of Escherichia coli 0111:B4 lipopolysaccharide (LPS) alone or in combination with inhibitors of the synthesis of NO, NG-nitro-L-arginine methyl ester or NG-monomethyl-L-arginine. In the animals treated with the combination of NO synthase inhibitors and LPS, leukocyte adherence was increased threefold above that in animals treated with LPS alone. This was accompanied by a 33% reduction in sinusoidal blood flow. Simultaneous administration of L-arginine, but not D-arginine, eliminated these microcirculatory disturbances. The results demonstrate that inhibition of LPS-stimulated NO production results in an early hepatic microvascular inflammatory response to a dose of endotoxin which by itself is scarcely inflammatory. This suggests that NO plays a significant role in stabilizing the hepatic microcirculation during endotoxemia, thereby helping to protect the liver from ischemia and leukocyte-induced oxidative injury.


2013 ◽  
Vol 210 (11) ◽  
pp. 2181-2190 ◽  
Author(s):  
Deanna A. Mele ◽  
Andres Salmeron ◽  
Srimoyee Ghosh ◽  
Hon-Ren Huang ◽  
Barbara M. Bryant ◽  
...  

Interleukin (IL) 17–producing T helper (TH17) cells have been selected through evolution for their ability to control fungal and bacterial infections. It is also firmly established that their aberrant generation and activation results in autoimmune conditions. Using a characterized potent and selective small molecule inhibitor, we show that the bromodomain and extra-terminal domain (BET) family of chromatin adaptors plays fundamental and selective roles in human and murine TH17 differentiation from naive CD4+ T cells, as well as in the activation of previously differentiated TH17 cells. We provide evidence that BET controls TH17 differentiation in a bromodomain-dependent manner through a mechanism that includes the direct regulation of multiple effector TH17-associated cytokines, including IL17, IL21, and GMCSF. We also demonstrate that BET family members Brd2 and Brd4 associate with the Il17 locus in TH17 cells, and that this association requires bromodomains. We recapitulate the critical role of BET bromodomains in TH17 differentiation in vivo and show that therapeutic dosing of the BET inhibitor is efficacious in mouse models of autoimmunity. Our results identify the BET family of proteins as a fundamental link between chromatin signaling and TH17 biology, and support the notion of BET inhibition as a point of therapeutic intervention in autoimmune conditions.


2003 ◽  
Vol 284 (1) ◽  
pp. E156-E167 ◽  
Author(s):  
Christine Mallet ◽  
Olivier Féraud ◽  
Gaehl Ouengue-Mbélé ◽  
Isabelle Gaillard ◽  
Nicolas Sappay ◽  
...  

Although ACTH is important to adrenal growth and steroidogenesis, its role in vascular development and function has not been established in vivo. In the present study, we demonstrate the expression of mRNA for all four VEGF isoforms (mVEGF120,144,164,188) and for Flk-1/KDR and Flt-1 receptors in the mouse adrenal in vivo. Suppression of the pituitary adrenocortical axis by dexamethasone (0.5 mg · 100 g body wt−1· day−1during 6 days) induced a decrease in corticosterone levels, adrenal weights by 50% ( P < 0.001), VEGF188mRNA, and Flk-1/KDR mRNA, whereas Flt-1 remained consistent during steroid treatment. A daily injection of ACTH-(1–39) restored the transcript for Flk-1/KDR and both VEGF188and plasma corticosterone to control levels. To gain further insights into the effects of ACTH, cultured endothelial cells (ECs) were treated with forskolin, which increases cAMP, the second messenger in ACTH action. We demonstrate that Flk-1/KDR protein expression was markedly increased by forskolin within 24–48 h of treatment in a dose-dependent manner (0.1–10 μM). The biological effect of ACTH on ECs was then tested by use of coincubations of fasciculata cells and ECs in 3D-collagen assay. Within 5–7 days of culture, ECs organized into multicellular structures that resemble networks of microvasculature, which characterize angiogenesis in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sireesh Kumar Teertam ◽  
Phanithi Prakash Babu

AbstractCerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.


2021 ◽  
Vol 17 ◽  
Author(s):  
Gideon Ayeni ◽  
Mthokozisi Blessing Cedric Simelane ◽  
Shahidul Islam ◽  
Ofentse Jacob Pooe

Background: Medicinal plants together with their isolated bioactive compounds are known for their antioxidant properties which constitute therapeutic agents that are routinely employed in the treatment of liver diseases. Aims of the Study: The current study sought to explore the protective role of Warburgia salutaris and its isolated compound, iso-mukaadial acetate against carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Thirty-five male Sprague Dawley rats were divided into seven groups of five animals each and injected with CCl4 to induce hepatic injury. Results: Treatment with the crude extract of W. salutaris and of iso-mukaadial acetate significantly reduced the levels of alkaline phosphatase, alanine and aspartate aminotransaminases, total bilirubin and malondialdehyde in a dose dependent manner, when compared to untreated groups. Liver histology revealed a reduction in hepatic necrosis and inflammation. Conclusion: The current investigation has demonstrated that W. salutaris extract and iso-mukaadial acetate could mitigate the acute liver injury inflicted by a hepatotoxic inducer in rats.


Sign in / Sign up

Export Citation Format

Share Document