scholarly journals The State of Art of Extracellular Traps in Protozoan Infections (Review)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhang ◽  
Ying Sun ◽  
Jingtong Zheng

Protozoan parasite infection causes severe diseases in humans and animals, leading to tremendous economic and medical pressure. Natural immunity is the first line of defence against parasitic infection. Currently, the role of natural host immunity in combatting parasitic infection is unclear, so further research on natural host immunity against parasites will provide a theoretical basis for the prevention and treatment of related parasitic diseases. Extracellular traps (ETs) are an important natural mechanism of immunity involving resistance to pathogens. When immune cells such as neutrophils and macrophages are stimulated by external pathogens, they release a fibrous network structure, consisting mainly of DNA and protein, that can capture and kill a variety of extracellular pathogenic microorganisms. In this review, we discuss the relevant recently reported data on ET formation induced by protozoan parasite infection, including the molecular mechanisms involved, and discuss the role of ETs in the occurrence and development of parasitic diseases.

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
César Díaz-Godínez ◽  
Julio C. Carrero

AbstractNeutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Gwendoline Deslyper ◽  
Derek G. Doherty ◽  
James C. Carolan ◽  
Celia V. Holland

Abstract Many parasites migrate through different tissues during their life-cycle, possibly with the aim to enhance their fitness. This is true for species of three parasite genera of global importance, Ascaris, Schistosoma and Plasmodium, which cause significant global morbidity and mortality. Interestingly, these parasites all incorporate the liver in their life-cycle. The liver has a special immune status being able to preferentially induce tolerance over immunity. This function may be exploited by parasites to evade host immunity, with Plasmodium spp. in particular using this organ for its multiplication. However, hepatic larval attrition occurs in both ascariasis and schistosomiasis. A better understanding of the molecular mechanisms involved in hepatic infection could be useful in developing novel vaccines and therapies for these parasites.


2015 ◽  
Vol 43 (4) ◽  
pp. 696-701 ◽  
Author(s):  
Karl Egan ◽  
Barry Kevane ◽  
Fionnuala Ní Áinle

Venous thromboembolism (VTE) remains a leading cause of maternal death and morbidity in the developed world. Strategies for prevention of VTE in pregnancy have been the subject of recent guidelines and consensus statements. These guidelines recommend thrombosis prevention in women who have risk factors associated with an elevated VTE risk. Preeclampsia is characterized by maternal hypertension and proteinuria developing after 20 weeks gestation, complicating up to 7% of pregnancies and is associated with a massive annual morbidity and mortality burden. Women with preeclampsia have been shown to be at increased risk of VTE with studies to date suggesting that this risk may be up to 5-fold greater than the risk of pregnancy-associated VTE in the general population. Despite the fact that preeclampsia is so common and potentially devastating, our understanding of its pathogenesis and potential therapeutic strategies remain poor. In addition, the mechanisms underlying the prothrombotic phenotype in preeclampsia are also poorly characterized although a number of potential mechanisms have been postulated. Derangements of platelet and endothelial activation and impairment of endogenous anti-coagulant pathways have been reported and may contribute to the observed VTE risk. Recently, evidence for the role of neutrophil extracellular traps (NETs) and cell-free DNA in the pathogenesis of VTE has emerged and some evidence exists to suggest that this may be of relevance in preeclampsia. Future studies aimed at understanding the diagnostic and potential therapeutic relevance of this procoagulant state are likely to be of enormous clinical benefit for pregnant women affected with this potentially devastating condition.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
TP. Velavan ◽  
Olusola Ojurongbe

Human host encounters a wide array of parasites; however, the crucial aspect is the failure of the host immune system to clear these parasites despite antigen recognition. In the recent past, a new immunological concept has emerged, which provides a framework to better understand several aspects of host susceptibility to parasitic infection. It is widely believed that parasites are able to modulate the magnitude of effector responses by inducing regulatory T cell (Tregs) population and several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during parasite infection. This review discusses the several mechanism of Treg-mediated immunosuppression in the human host and focuses on the functional role of Tregs and regulatory gene polymorphisms in infectious diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Despina Michailidou ◽  
Tomas Mustelin ◽  
Christian Lood

Neutrophils and neutrophil extracellular traps (NETs) contribute to the pathogenesis of many autoimmune diseases, including vasculitis. Though neutrophils, and NETs, can break self-tolerance by being a source of autoantigens for autoantibodies in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, playing a key role in driving the autoimmune response, the role of neutrophils and NETs in large vessel vasculitis, including giant cell arteritis (GCA), is not well understood. In this review, we summarize the current insight into molecular mechanisms contributing to neutrophil-mediated pathology in small and medium vessel vasculitis, as well as provide potential translational perspectives on how neutrophils, and NETs, may partake in large vessel vasculitis, a rare disease entity of unclear pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Barbara Gierlikowska ◽  
Albert Stachura ◽  
Wojciech Gierlikowski ◽  
Urszula Demkow

Neutrophils are crucial elements of innate immune system, which assure host defense via a range of effector functions, such as phagocytosis, degranulation, and NET formation. The latest literature clearly indicates that modulation of effector functions of neutrophils may affect the treatment efficacy. Pharmacological modulation may affect molecular mechanisms activating or suppressing phagocytosis, degranulation or NET formation. In this review, we describe the role of neutrophils in physiology and in the course of bacterial and viral infections, illustrating the versatility and plasticity of those cells. This review also focus on the action of plant extracts, plant-derived compounds and synthetic drugs on effector functions of neutrophils. These recent advances in the knowledge can help to devise novel therapeutic approaches via pharmacological modulation of the described processes.


The Nucleus ◽  
2021 ◽  
Author(s):  
Souradeepa Ghosh ◽  
Snehlata ◽  
Shahbaj Hussain ◽  
Himani Makkar ◽  
Budhaditya Mukherjee

2005 ◽  
Vol 7 (13) ◽  
pp. 1-19 ◽  
Author(s):  
Richard C. Laughlin ◽  
Lesly A. Temesvari

The protozoan parasite Entamoeba histolytica is the causative agent of amoebic dysentery. It is prevalent in developing countries that cannot prevent its fecal–oral spread and ranks second in worldwide causes of morbidity by parasitic infection. Improvements in sanitation would help curb disease spread. However, a lack of significant progress in this area has resulted in the need for a better understanding of the molecular and cellular biology of pathogenesis in order to design novel methods of disease treatment and prevention. Recent insight into the cellular mechanisms regulating virulence of E. histolytica has indicated that processes such as endocytosis, secretion, host cell adhesion and encystation play major roles in the infectious process. This review focuses on components of the molecular machinery that govern these cellular processes and their role in virulence, and discusses how an understanding of this might reveal opportunities to interfere with E. histolytica infection.


2021 ◽  
Vol 22 (4) ◽  
pp. 2116
Author(s):  
Sonia Águila ◽  
Ascensión M. de los Reyes-García ◽  
María P. Fernández-Pérez ◽  
Laura Reguilón-Gallego ◽  
Laura Zapata-Martínez ◽  
...  

Neutrophil extracellular traps (NETs) are formed after neutrophils expelled their chromatin content in order to primarily capture and eliminate pathogens. However, given their characteristics due in part to DNA and different granular proteins, NETs may induce a procoagulant response linking inflammation and thrombosis. Unraveling NET formation molecular mechanisms as well as the intracellular elements that regulate them is relevant not only for basic knowledge but also to design diagnostic and therapeutic tools that may prevent their deleterious effects observed in several inflammatory pathologies (e.g., cardiovascular and autoimmune diseases, cancer). Among the potential elements involved in NET formation, several studies have investigated the role of microRNAs (miRNAs) as important regulators of this process. miRNAs are small non-coding RNAs that have been involved in the control of almost all physiological processes in animals and plants and that are associated with the development of several pathologies. In this review, we give an overview of the actual knowledge on NETs and their implication in pathology with a special focus in cardiovascular diseases. We also give a brief overview on miRNA biology to later focus on the different miRNAs implicated in NET formation and the perspectives opened by the presented data.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Sign in / Sign up

Export Citation Format

Share Document