scholarly journals Genetic Ablation of the Inducible Form of Nitric Oxide in Male Mice Disrupts Immature Neuron Survival in the Adult Dentate Gyrus

2021 ◽  
Vol 12 ◽  
Author(s):  
Gabriel G. Fernandes ◽  
Karla C. M. Costa ◽  
Davi S. Scomparin ◽  
Juliana B. Freire ◽  
Francisco S. Guimarães ◽  
...  

Inducible nitric oxide synthase (iNOS) is an enzyme upregulated in the brain during neuroimmune stimuli which is associated with an oxidative and pro-inflammatory environment in several brain regions, including the hippocampal formation and the prefrontal cortex. The dentate gyrus of the hippocampal formation is the site of a process known as adult hippocampal neurogenesis (AHN). Although many endogenous and extrinsic factors can modulate AHN, the exact participation of specific proinflammatory mediators such as iNOS in these processes remains to be fully elucidated. Here, we investigated how the total genetic ablation of iNOS impacts the hippocampal neurogenic niche and microglial phenotype and if these changes are correlated to the behavioral alterations observed in iNOS knockout (K.O.) mice submitted or not to the chronic unpredictable stress model (CUS - 21 days protocol). Contrary to our initial hypothesis, at control conditions, iNOS K.O. mice displayed no abnormalities on microglial activation in the dentate gyrus. However, they did exhibit impaired newborn cells and immature neuron survival, which was not affected by CUS. The reduction of AHN in iNOS K.O. mice was accompanied by an increased positive coping response in the tail suspension test and facilitation of anxiety-like behaviors in the novelty suppressed feeding. Next, we investigated whether a pro-neurogenic stimulus would rescue the neurogenic capacity of iNOS K.O. mice by administering in control and CUS groups the antidepressant escitalopram (ESC). The chronic treatment with ESC could not rescue the neurogenic capacity or the behavioral changes observed in iNOS K.O. mice. Besides, in the ventromedial prefrontal (vmPFC) cortex there was no change in the expression or the chronic activation of PV neurons (evaluated by double labeling PV with FOSB) in the prelimbic (PrL) or infralimbic subregions. FOSB expression, however, increased in the PrL of iNOS K.O. mice. Our results suggest that iNOS seems essential for the survival of newborn cells and immature neurons in the hippocampus and seem to partially explain the anxiogenic-like behavior observed in iNOS K.O. mice. On the other hand, the iNOS ablation appears to result in increased activity of the PrL which could explain the antidepressant-like behaviors of iNOS K.O mice.

2020 ◽  
Vol 117 (41) ◽  
pp. 25818-25829
Author(s):  
Xinxing Wang ◽  
Hanxiao Liu ◽  
Johannes Morstein ◽  
Alexander J. E. Novak ◽  
Dirk Trauner ◽  
...  

Hippocampus-engaged behaviors stimulate neurogenesis in the adult dentate gyrus by largely unknown means. To explore the underlying mechanisms, we used tetrode recording to analyze neuronal activity in the dentate gyrus of freely moving adult mice during hippocampus-engaged contextual exploration. We found that exploration induced an overall sustained increase in inhibitory neuron activity that was concomitant with decreased excitatory neuron activity. A mathematical model based on energy homeostasis in the dentate gyrus showed that enhanced inhibition and decreased excitation resulted in a similar increase in neurogenesis to that observed experimentally. To mechanistically investigate this sustained inhibitory regulation, we performed metabolomic and lipidomic profiling of the hippocampus during exploration. We found sustainably increased signaling of sphingosine-1-phosphate, a bioactive metabolite, during exploration. Furthermore, we found that sphingosine-1-phosphate signaling through its receptor 2 increased interneuron activity and thus mediated exploration-induced neurogenesis. Taken together, our findings point to a behavior-metabolism circuit pathway through which experience regulates adult hippocampal neurogenesis.


2019 ◽  
Vol 20 (12) ◽  
pp. 3030 ◽  
Author(s):  
Soo Jung Shin ◽  
Seong Gak Jeon ◽  
Jin-il Kim ◽  
Yu-on Jeong ◽  
Sujin Kim ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aβ-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aβ-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aβ accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aβ-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aβ deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lily Wan ◽  
Rou-Jie Huang ◽  
Chen Yang ◽  
Jia-Qi Ai ◽  
Qian Zhou ◽  
...  

Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.


2021 ◽  
Vol 15 ◽  
Author(s):  
Natalie N. Nawarawong ◽  
K. Ryan Thompson ◽  
Steven P. Guerin ◽  
Chinchusha Anasooya Shaji ◽  
Hui Peng ◽  
...  

Hippocampal neurodegeneration is a consequence of excessive alcohol drinking in alcohol use disorders (AUDs), however, recent studies suggest that females may be more susceptible to alcohol-induced brain damage. Adult hippocampal neurogenesis is now well accepted to contribute to hippocampal integrity and is known to be affected by alcohol in humans as well as in animal models of AUDs. In male rats, a reactive increase in adult hippocampal neurogenesis has been observed during abstinence from alcohol dependence, a phenomenon that may underlie recovery of hippocampal structure and function. It is unknown whether reactive neurogenesis occurs in females. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by 7 or 14 days of abstinence. Immunohistochemistry (IHC) was used to assess neural progenitor cell (NPC) proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1). On day seven of abstinence, ethanol-treated females showed a significant increase in BrdU+ and Ki67+ cells in the subgranular zone of the dentate gyrus (SGZ), as well as greater activation of NPCs (Sox2+/Ki67+) into active cycling. At day 14 of abstinence, there was a significant increase in the number of immature neurons (NeuroD1+) though no evidence of ectopic neurogenesis according to either NeuroD1 or Prox1 immunoreactivity. Altogether, these data suggest that alcohol dependence produces similar reactive increases in NPC proliferation and adult neurogenesis. Thus, reactive, adult neurogenesis may be a means of recovery for the hippocampus after alcohol dependence in females.


2009 ◽  
Vol 29 (31) ◽  
pp. 9875-9887 ◽  
Author(s):  
K. N. Scobie ◽  
B. J. Hall ◽  
S. A. Wilke ◽  
K. C. Klemenhagen ◽  
Y. Fujii-Kuriyama ◽  
...  

2017 ◽  
Vol 27 ◽  
pp. S1013-S1014
Author(s):  
N.D. Alves ◽  
P. Patrício ◽  
J.S. Correia ◽  
A. Mateus-Pinheiro ◽  
A.R. Machado-Santos ◽  
...  

2007 ◽  
Vol 75 (9) ◽  
pp. 4289-4297 ◽  
Author(s):  
Olaf Hoffmann ◽  
Cordula Mahrhofer ◽  
Nina Rueter ◽  
Dorette Freyer ◽  
Bettina Bert ◽  
...  

ABSTRACT Bacterial meningitis is a major infectious cause of neuronal degeneration in the hippocampus. Neurogenesis, a continuous process in the adult hippocampus, could ameliorate such loss. Yet the high rate of sequelae from meningitis suggests that this repair mechanism is inefficient. Here we used a mouse model of nonreplicative bacterial meningitis to determine the impact of transient intracranial inflammation on adult neurogenesis. Experimental meningitis resulted in a net loss of neurons, diminished volume, and impaired neurogenesis in the dentate gyrus for weeks following recovery from the insult. Inducible nitric oxide synthase (iNOS) immunoreactivity was prominent in microglia in nonproliferating areas of the dentate gyrus and hilus region after meningitis induction. Treatment with the specific iNOS inhibitor N6-(1-iminoethyl)-l-lysine restored neurogenesis in experimental meningitis. These data suggest that local central nervous system inflammation in and of itself suppresses adult neurogenesis by affecting both proliferation and neuronal differentiation. Repair of cognitive dysfunction following meningitis could be improved by intervention to interrupt these actively suppressive effects.


2008 ◽  
Vol 5 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Irmgard Amrein ◽  
Hans-Peter Lipp

Substantial production of new neurons in the adult mammalian brain is restricted to the olfactory system and the hippocampal formation. Its physiological and behavioural role is still debated. By comparing adult hippocampal neurogenesis (AHN) across many mammalian species, one might recognize a common function. AHN is most prominent in rodents, but shows considerable variability across species, being lowest or missing in primates and bats. The latter finding argues against a critical role of AHN in spatial learning and memory. The common functional denominator across all species investigated thus far is a strong decline of AHN from infancy to midlife. As predicted by Altman and colleagues in 1973, this implies a role in transforming juvenile unpredictable to predictable behaviour, typically characterizing mammalian behaviour once reproductive competence has been attained. However, as only a fraction of mammalian species has been investigated, further comparative studies are necessary in order to recognize whether AHN has a common unique function, or whether it mediates species-specific hippocampal functions.


2021 ◽  
Author(s):  
M Koehl ◽  
E Ladevèze ◽  
M Montcouquiol ◽  
DN Abrous

AbstractDecline in episodic memory is one of the hallmarks of aging and represents one of the most important health problems facing western societies. A key structure in episodic memory is the hippocampal formation and the dentate gyrus in particular, as the continuous production of new dentate granule neurons in this brain region was found to play a crucial role in memory and in age-related decline in memory. As such, understanding the molecular processes that regulate the relationship between adult neurogenesis and aging of memory function holds great therapeutic potential. Recently, we found that Vang-gogh like 2 (Vangl2), a core component of the planar cell polarity signaling pathway, is enriched in the dentate gyrus of adult mice. In this context, we sought to evaluate the involvement of this effector of the Wnt/PCP pathway in both adult neurogenesis and memory abilities in adult and middle-aged mice. Using a heterozygous mouse model carrying a dominant negative mutation in Vangl2 gene, we show that alteration in Vangl2 expression decreases the survival of adult-born granule cells and advances the onset of decrease in cognitive flexibility. Inability of mutant mice to erase old irrelevant information to the benefit of new relevant ones highlights a key role of Vangl2 in interference-based forgetting. Taken together, our findings show for the first that Vangl2 activity may constitute an interesting target to prevent age-related decline in hippocampal plasticity and memory.


2019 ◽  
Author(s):  
Paula Duarte-Guterman ◽  
Dwayne K. Hamson ◽  
Steven R. Wainwright ◽  
Carmen Chow ◽  
Jessica Chaiton ◽  
...  

AbstractAndrogens (testosterone and dihydrotestosterone) increase adult hippocampal neurogenesis by increasing new neuron survival in male rats and mice via an androgen receptor pathway, but it is not known whether androgens regulate neurogenesis in females and whether the effect is age-dependent. We investigated the effects of dihydrotestosterone, a potent androgen, on neurogenesis in adult and middle-aged males and females. Rats were gonadectomized and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU). The following day rats began receiving daily injections of oil or DHT for 30 days. We evaluated cell proliferation (Ki67) and new neuron survival (BrdU and BrdU/NeuN) in the hippocampus of male and female rats using immunohistochemistry. As expected, DHT increased new neuron survival in young males but surprisingly not in middle-aged male rats. In females, DHT did not significantly affect adult neurogenesis in young or middle age. Our results indicate that DHT regulates adult hippocampal neurogenesis in a sex- and age-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document