scholarly journals Neutralizing Activity and SARS-CoV-2 Vaccine mRNA Persistence in Serum and Breastmilk After BNT162b2 Vaccination in Lactating Women

2022 ◽  
Vol 12 ◽  
Author(s):  
Kee Thai Yeo ◽  
Wan Ni Chia ◽  
Chee Wah Tan ◽  
Chengsi Ong ◽  
Joo Guan Yeo ◽  
...  

BackgroundThere is limited information on the functional neutralizing capabilities of breastmilk SARS-CoV-2-specific antibodies and the potential adulteration of breastmilk with vaccine mRNA after SARS-CoV-2 mRNA vaccination.MethodsWe conducted a prospective cohort study of lactating healthcare workers who received the BNT162b2 vaccine and their infants. The presence of SARS-CoV-2 neutralizing antibodies, antibody isotypes (IgG, IgA, IgM) and intact mRNA in serum and breastmilk was evaluated at multiple time points using a surrogate neutralizing assay, ELISA, and PCR, over a 6 week period of the two-dose vaccination given 21 days apart.ResultsThirty-five lactating mothers, median age 34 years (IQR 32-36), were included. All had detectable neutralizing antibodies in the serum immediately before dose 2, with significant increase in neutralizing antibody levels 7 days after this dose [median 168.4 IU/ml (IQR 100.7-288.5) compared to 2753.0 IU/ml (IQR 1627.0-4712.0), p <0.001]. Through the two vaccine doses, all mothers had detectable IgG1, IgA and IgM isotypes in their serum, with a notable increase in all three antibody isotypes after dose 2, especially IgG1 levels. Neutralizing antibodies were detected in majority of breastmilk samples a week after dose 2 [median 13.4 IU/ml (IQR 7.0-28.7)], with persistence of these antibodies up to 3 weeks after. Post the second vaccine dose, all (35/35, 100%) mothers had detectable breastmilk SARS-CoV-2 spike RBD-specific IgG1 and IgA antibody and 32/35 (88.6%) mothers with IgM. Transient, low intact vaccine mRNA levels was detected in 20/74 (27%) serum samples from 21 mothers, and 5/309 (2%) breastmilk samples from 4 mothers within 1 weeks of vaccine dose. Five infants, median age 8 months (IQR 7-16), were also recruited - none had detectable neutralizing antibodies or vaccine mRNA in their serum.ConclusionMajority of lactating mothers had detectable SARS-CoV-2 antibody isotypes and neutralizing antibodies in serum and breastmilk, especially after dose 2 of BNT162b2 vaccination. Transient, low levels of vaccine mRNA were detected in the serum of vaccinated mothers with occasional transfer to their breastmilk, but we did not detect evidence of infant sensitization. Importantly, the presence of breastmilk neutralising antibodies likely provides a foundation for passive immunisation of the breastmilk-fed infant.

2008 ◽  
Vol 15 (10) ◽  
pp. 1536-1540 ◽  
Author(s):  
Hiroyuki Ochi ◽  
Kazunari Kondo ◽  
Koji Matsumoto ◽  
Akinori Oki ◽  
Toshiharu Yasugi ◽  
...  

ABSTRACT We have very limited information on serum neutralizing antibody in women naturally infected with the human papillomaviruses (HPVs) that are causally associated with cervical cancer. In this study, serum samples collected from 217 Japanese women with low-grade cervical intraepithelial neoplasia were examined for their neutralizing activities against HPV16, -18, -31, -52, and -58 pseudovirions. Eighty-four patients (39%), 35 patients (16%), 17 patients (8%), and 1 patient were positive for neutralizing antibodies against one, two, three, and four of these types, respectively. Presence of neutralizing antibody did not always correlate with detection of HPV DNA in cervical swabs collected at the time of blood collection. The neutralizing titers of the majority of sera, ranging between 40 and 640, were found to be conserved in the second sera, collected 24 months later, independently of emergence of HPV DNA in the second cervical swabs. The data strongly suggest that HPV infection induces anti-HPV neutralizing antibody at low levels, which are maintained for a long period of time.


Author(s):  
Vincent Legros ◽  
Solène Denolly ◽  
Manon Vogrig ◽  
Bertrand Boson ◽  
Eglantine Siret ◽  
...  

AbstractUnderstanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection against reinfection and, thus, for public health policy and vaccine development for COVID-19. In this study, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum samples from a cohort of 140 SARS-CoV-2 qPCR-confirmed infections, including patients with mild symptoms and also more severe forms, including those that required intensive care. We show that nAb titers correlated strongly with disease severity and with anti-spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers; conversely, patients with milder disease symptoms had heterogeneous nAb titers, and asymptomatic or exclusive outpatient-care patients had no or low nAbs. We found that nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery compared to individuals infected with other coronaviruses. Moreover, we found an absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAbs against SARS-CoV-2. Finally, we found that the D614G mutation in the spike protein, which has recently been identified as the current major variant in Europe, does not allow neutralization escape. Altogether, our results contribute to our understanding of the immune correlates of SARS-CoV-2-induced disease, and rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2 is warranted.


2017 ◽  
Vol 47 (10) ◽  
Author(s):  
Mathias Martins ◽  
João Motta de Quadros ◽  
Eduardo Furtado Flores ◽  
Rudi Weiblen

ABSTRACT: The antibody response to rabies virus (RABV) induced by commercial vaccines in heifers was investigated. For this, 84 heifers were vaccinated twice (30 days interval) with each of four vaccines (G1 = 14 animals; G2 = 24; G3 = 22 and G4 = 24) and received a booster vaccination 360 days later. Serum samples collected at different intervals after vaccination and 30 days after booster were submitted to a virus neutralizing (VN) assay for RABV antibodies. Thirty days after the second vaccine dose, 92% of the immunized animals presented VN titers ≥0.5UI/mL (geometric medium titers [GMT] 1.7 to 3.8UI/mL). At the day of the booster (360 days post-vaccination); however, the percentage of animals harboring antibody titers ≥0.5UI/mL had dropped to 31% (0-80% of the animals, depending on the vaccine), resulting in lower GMT (0.1 to 0.6UI/mL). Booster vaccination at day 360 resulted in a detectable anamnestic response in all groups, resulting in 83% of animals (65 to 100%) harboring VN titers ≥0.5UI/mL thirty days later (GMT 0.6 to 4.3UI/mL). These results indicated that these vaccines were able to induce an adequate anti-RABV response in all animals after prime vaccination (and after booster as well). However, the titers decreased, reaching titers <0.5UI/mL in approximately 70% of animals within the interval before the recommended booster. Thus, booster vaccination for rabies in cattle using the current vaccines should be performed before the recommended one-year interval, as to maintain neutralizing antibodies levels in most vaccinated animals.


2021 ◽  
Author(s):  
Noa Eliakim Raz ◽  
Amos Stemmer ◽  
Yaara Leibovici-Weissman ◽  
Asaf Ness ◽  
Muhammad Awwad ◽  
...  

BACKGROUND Age and frailty are strong predictors of COVID-19 mortality. After the second BNT162b2 dose, immunity wanes faster in older (≥65 years) versus younger adults. The durability of response after the third vaccine is unclear. METHODS This prospective cohort study included healthcare workers/family members ≥60 years who received a third BNT162b2 dose. Blood samples were drawn immediately before (T0), 10-19 (T1), and 74-103 (T2) days after the third dose. Antispike IgG titers were determined using a commercial assay, seropositivity was defined as ≥50 AU/mL. Neutralizing antibody titers were determined at T2. Adverse events, COVID-19 infections, and clinical frailty scale (CFS) levels were documented. RESULTS The analysis included 97 participants (median age, 70 years [IQR, 66-74], 61% women, 58% CFS level 2). IgG titers, which increased significantly from T0 to T1 (medians, 440 AU/mL [IQR, 294-923] and 25,429 [14,203-36,114] AU/mL, respectively; P<0.001), decreased significantly by T2, but all remained seropositive (median, 8,306 AU/mL [IQR, 4595-14,701], P<0.001 vs T1). In a multivariable analysis, only time from the first vaccine was significantly associated with lower IgG levels at T2 (P=0.004). At T2, 60 patients were evaluated for neutralizing antibodies; all were seropositive (median, 1,294 antibody titer [IQR, 848-2,072]). Neutralizing antibody and antispike IgG levels were correlated (R=0.6, P<0.001). No major adverse events or COVID-19 infections were reported. CONCLUSIONS Antispike IgG and neutralizing antibodies levels remain adequate 3 months after the third BNT162b2 vaccine in healthy adults ≥60 years, although the decline in IgG is concerning. A third vaccine dose in this population should be top priority.


2021 ◽  
Author(s):  
Yu-An Kung ◽  
Chung-Guei Huang ◽  
Sheng-Yu Huang ◽  
Kuan-Ting Liu ◽  
Peng-Nien Huang ◽  
...  

The World Health Organization (WHO) has highlighted the importance of an international standard (IS) for SARS-CoV-2 neutralizing antibody titer detection, with the aim of calibrating different diagnostic techniques. In this study, IS was applied to calibrate neutralizing antibody titers (IU/mL) and binding antibody titers (BAU/mL) in response to SARS-CoV-2 vaccines. Serum samples were collected from participants receiving the Moderna (n = 20) and Pfizer (n = 20) vaccines at three time points: pre-vaccination, after one dose, and after two doses. We obtained geometric mean titers of 1404.16 and 928.75 IU/mL for neutralizing antibodies after two doses of the Moderna and Pfizer vaccines, respectively. These values provide an important baseline for vaccine development and the implementation of non-inferiority trials. We also compared three commercially available kits from Roche, Abbott, and MeDiPro for the detection of COVID-19 antibodies based on binding affinity to S1 and/or RBD. Our results demonstrated that antibody titers measured by commercial assays are highly correlated with neutralizing antibody titers calibrated by IS.


2019 ◽  
Vol 31 (4) ◽  
pp. 288-295 ◽  
Author(s):  
Adrienne Guignard ◽  
François Haguinet ◽  
Stéphanie Wéry ◽  
Phirangkul Kerdpanich

Understanding maternal dengue virus (DENV) neutralizing antibody kinetics in infants remains timely to develop a safe and effective childhood immunization. This retrospective study evaluated the prevalence and persistence of maternal antibody titers against DENV serotypes 1 to 4 in 139 Thai infants at 2, 6, and 7 months of age, using serum samples collected in a vaccination trial ( http://clinicaltrials.gov ; NCT00197275). Neutralizing antibodies against all 4 DENV serotypes were detected in 87.8% and 22.9% of infants at 2 and 7 months, respectively. At 2 months, DENV-4 neutralizing antibody geometric mean titers were notably lower (80) compared with DENV-1 to DENV-3 (277-471). Our results corroborate previous findings that DENV-1 to DENV-4 maternal antibodies persist at 7 months despite titers decrease from 2 months onwards. As persisting maternal antibodies may inhibit immune responses in DENV-vaccinated infants, a comprehensive understanding of DENV antibody kinetics is required in the perspective of vaccine development for infants.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S975-S975
Author(s):  
Ying Wang ◽  
Charles B Stauft ◽  
Kanakatte Raviprakash ◽  
J Robert Coleman ◽  
Steffen Mueller

Abstract Background The WHO estimates that there may be 50 million cases of dengue virus (DENV) infection worldwide every year. There is no safe vaccine against DENV licensed in the United States. The development of a balanced and effective anti-DENV vaccine is vital to preventing morbidity and mortality. Codagenix used its proprietary SAVE (Synthetic Attenuated Virus Engineering) platform to generate and test a live attenuated, tetravalent vaccine against DENV. Methods Codagenix used SAVE to substitute under-represented human codons and codon-pairs into the E protein sequences of contemporary strains of DENV1-4, producing either a fully human-cell-deoptimized prM-E (E-Min), or a partially deoptimized prM-E (E-W/Min) to allow for balancing of the vaccine’s immunogenicity. Full genomes containing deoptimized E-Min and E-W/Min in the DENV2 backbone were transfected into cells to recover live-attenuated, human-cell-deoptimized vaccine strains. Mice were vaccinated with 106 FFU of each DENV vaccine (alone or together), boosted on day 21 and assessed for neutralizing antibodies by PRNT50 and survival after lethal challenge with mouse-adapted wild-type (WT) DENV. Cynomolgus macaques were immunized with a mixture of 106 FFU of each DENV vaccine strain. Two doses were administered on study day 1 and 57 and serum neutralizing antibodies were determined on day 57 and 85 by a microneutralization assay. Results SAVE deoptimized DENV viruses grew to wild-type (between 107 and 108 FFU/ml) levels at permissive temperatures (<37C). All vaccine strains generated neutralizing antibody levels comparable to WT. A tetravalent formulation containing all four E-Min strains protected mice from lethal challenge with DENV3. A tetravalent formulation of Codagenix DENV-E-W/Min vaccine elicited a robust and balanced neutralizing antibody response in non-human primates (NHPs) against all four DENV serotypes after a single dose. A second vaccine dose did not boost antibody titers significantly. Conclusion The ability to rationally balance the attenuation of multiple vaccine strains, thereby avoiding antibody-dependent enhancement, is a unique advantage of the Codagenix SAVE platform. Codagenix DENV vaccine viruses generated balanced, sterilizing immunity in NHPs after one dose. Disclosures All authors: No reported disclosures.


2004 ◽  
Vol 11 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Pratibha G. Ray ◽  
Shobhana D. Kelkar

ABSTRACT Neutralizing antibody (NAb) responses to different rotavirus serotypes were compared in 64 convalescent-phase serum samples from hospitalized rotavirus-positive children less than 2 years of age and their mothers. Compared to the child patients, the mothers showed significantly higher NAb positivity to animal rotavirus serotypes G3 simian (96.88%), G6 bovine (85.94%), and G10 bovine (25.0%) and to human rotavirus serotypes G8 (79.69%) and G3 (57.81%) (P < 0.01 for each) but not to human serotypes G1, G2, G4, and G9 (P > 0.05). The overall prevalence of NAb among the child patients was low for human rotavirus serotypes G1 (20.31%) and G3 (21.8%). The comparative NAb response in individual mother-child paired serum samples was analyzed against each rotavirus serotype. A substantial number of child patients showed higher NAb titers than their mothers to serotypes G1, G2, G4, and G9, indicating that these serotypes are the major serotypes causing rotavirus diarrhea among the children of Pune, India. In these cases, the mothers were either negative or had lower titers of NAbs than their children. Correlation was observed between the infecting serotype and child patient serum that showed a homologous NAb response at a higher level than that of the mother. It appears that when the level of NAb to a particular serotype is higher among child patients than among their mothers, that serotype is the infecting serotype, and that low titers of NAb among the mothers predispose the children to infection with that serotype, if the serotype is in circulation.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2270
Author(s):  
Gloria Griffante ◽  
Shikha Chandel ◽  
Daniela Ferrante ◽  
Valeria Caneparo ◽  
Daniela Capello ◽  
...  

Longitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio-Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay. Using sequential serum samples collected from 100 COVID-19 recovered individuals from northern Italy—mostly with mild disease—at 2 and 10 months after their first positive PCR test, we show that 93% of them seroconverted at 2 months, with a geometric mean (GeoMean) half-maximal neutralization titer (NT50) of 387.9. Among the 35 unvaccinated subjects retested at 10 months, 7 resulted seronegative, with an 80% drop in seropositivity, while 28 showed decreased anti-receptor binding domain (RBD) and anti-spike (S) IgG titers, with a GeoMean NT50 neutralization titer dropping to 163.5. As an NT50 > 100 is known to confer protection from SARS-CoV-2 re-infection, our data show that the neutralizing activity elicited by the natural infection has lasted for at least 10 months in a large fraction of subjects.


2021 ◽  
Author(s):  
Carlos A Sariol ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Tiffant Rosa-Arocho ◽  
Albersy Armina ◽  
...  

On this work we report that despite of a decline in the total anti-Spike antibodies the neutralizing antibodies remains at a similar level for an average of 98 days in a longitudinal cohort of 59 Hispanic/Latino exposed to SARS-CoV-2. We are also reporting that the percentage of neutralization correlates with the IgG titers and that in the first collected samples, IgG1 was the predominant isotype (62.71%), followed by IgG4 (15.25%), IgG3 (13.56%), and IgG2 (8.47%) during the tested period. The IgA was detectable in 28.81% of subjects. Only 62.71% of all subjects have detectable IgM in the first sample despite of confirmed infection by a molecular method. Our data suggests that 100% that seroconvert make detectable neutralizing antibody responses measured by a surrogate viral neutralization test. We also found that the IgG titers and neutralizing activity were higher after the first dose in 10 vaccinated subjects out of the 59 with prior infection compare to a subgroup of 21 subjects naive to SARS-CoV-2. One dose was enough but two were necessary to reach the maximum percentage of neutralization in subjects with previous natural infection or naive to SARS-CoV-2 respectively. Like the pattern seen after the natural infection, after the second vaccine dose, the total anti-S antibodies and titers declined but not the neutralizing activity which remains at same levels for more than 80 days after the first vaccine dose. That decline, however, was significantly lower in pre-exposed individuals which denotes the contribution of the natural infection priming a more robust immune response to the vaccine. Also, our data indicates that the natural infection induces a more robust humoral immune response than the first vaccine dose in unexposed subjects. However, the difference was significant only when the neutralization was measured but not by assessing the total anti-S antibodies or the IgG titers. This work is an important contribution to understand the natural immune response to the novel coronavirus in a population severely hit by the virus. Also provide an invaluable data by comparing the dynamic of the immune response after the natural infection vs. the vaccination and suggesting that a functional test is a better marker than the presence or not of antibodies. On this context our results are also highly relevant to consider standardizing methods that in addition to serve as a tool to follow up the immune response to the vaccines may also provide a correlate of protection.


Sign in / Sign up

Export Citation Format

Share Document