scholarly journals Vascular Microenvironment, Tumor Immunity and Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Zachary Lamplugh ◽  
Yi Fan

Immunotherapy holds great promise for treating cancer. Nonetheless, T cell-based immunotherapy of solid tumors has remained challenging, largely due to the lack of universal tumor-specific antigens and an immunosuppressive tumor microenvironment (TME) that inhibits lymphocyte infiltration and activation. Aberrant vascularity characterizes malignant solid tumors, which fuels the formation of an immune-hostile microenvironment and induces tumor resistance to immunotherapy, emerging as a crucial target for adjuvant treatment in cancer immunotherapy. In this review, we discuss the molecular and cellular basis of vascular microenvironment-mediated tumor evasion of immune responses and resistance to immunotherapy, with a focus on vessel abnormality, dysfunctional adhesion, immunosuppressive niche, and microenvironmental stress in tumor vasculature. We provide an overview of opportunities and challenges related to these mechanisms. We also propose genetic programming of tumor endothelial cells as an alternative approach to recondition the vascular microenvironment and to overcome tumor resistance to immunotherapy.

2007 ◽  
Vol 25 (7) ◽  
pp. 852-861 ◽  
Author(s):  
Ronald J. Buckanovich ◽  
Dimitra Sasaroli ◽  
Anne O'Brien-Jenkins ◽  
Jeffrey Botbyl ◽  
Rachel Hammond ◽  
...  

Purpose This study aimed to identify novel ovarian cancer biomarkers and potential therapeutic targets through molecular analysis of tumor vascular cells. Methods Immunohistochemistry-guided laser-capture microdissection and genome-wide transcriptional profiling were used to identify genes that were differentially expressed between vascular cells from human epithelial ovarian cancer and healthy ovaries. Tumor vascular markers (TVMs) were validated through quantitative real-time polymerase chain reaction (qRT-PCR) of immunopurified tumor endothelial cells, in situ hybridization, immunohistochemistry, and Western blot analysis. TVM expression in tumors and noncancerous tissues was assessed by qRT-PCR and was profiled using gene expression data. Results We identified a tumor vascular cell profile of ovarian cancer that was distinct from the vascular profile of normal ovary and other tumors. We validated 12 novel ovarian TVMs. These were expressed by immunopurified tumor endothelial cells and localized to tumor vasculature. Select TVMs were found to be specifically expressed in ovarian cancer and were absent in all normal tissues tested, including female reproductive tissues with physiologic angiogenesis. Many ovarian TVMs were expressed by a variety of other solid tumors. Finally, overexpression of any one of three ovarian TVMs by vascular cells was associated with decreased disease-free interval (all P < .005). Conclusion We have identified for the first time the molecular profile of ovarian tumor vasculature. We demonstrate that TVMs may serve as potential biomarkers and molecular targets for ovarian cancer and a variety of other solid tumors.


2019 ◽  
Vol 20 (24) ◽  
pp. 6180 ◽  
Author(s):  
Alessia Brossa ◽  
Lola Buono ◽  
Sofia Fallo ◽  
Alessandra Fiorio Pla ◽  
Luca Munaron ◽  
...  

Endothelial cells present in tumors show different origin, phenotype, and genotype with respect to the normal counterpart. Various mechanisms of intra-tumor vasculogenesis sustain the complexity of tumor vasculature, which can be further modified by signals deriving from the tumor microenvironment. As a result, resistance to anti-VEGF therapy and activation of compensatory pathways remain a challenge in the treatment of cancer patients, revealing the need to explore alternative strategies to the classical anti-angiogenic drugs. In this review, we will describe some alternative strategies to inhibit tumor vascularization, including targeting of antigens and signaling pathways overexpressed by tumor endothelial cells, the development of endothelial vaccinations, and the use of extracellular vesicles. In addition, anti-angiogenic drugs with normalizing effects on tumor vessels will be discussed. Finally, we will present the concept of endothelial demesenchymalization as an alternative approach to restore normal endothelial cell phenotype.


2020 ◽  
Vol 04 (04) ◽  
pp. 345-350
Author(s):  
Ryan J. Slovak ◽  
Hyun S. Kim

AbstractThe reinfusion of autologous or allogeneic immune cells that have been educated and/or engineered ex vivo to respond to tumor-specific antigens is termed “adoptive cell therapy.” While adoptive cell therapy has made tremendous strides in the treatment of hematologic malignancies, its utilization for solid tumors has lagged somewhat behind. The purpose of this article is to concisely review the clinical research that has been done to investigate adoptive cell therapy as a treatment for gastrointestinal malignancies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jun Lin ◽  
Binbin Ding ◽  
Pan Zheng ◽  
Dong Li ◽  
Meifang Wang ◽  
...  

Cancer vaccine is to make tumor-specific antigens into vaccines, which then are injected back into the body to activate immune responses for cancer immunotherapy. Despite the high specificity and therapeutic...


2016 ◽  
Vol 61 ◽  
pp. S123
Author(s):  
J. Niemann ◽  
N. Woller ◽  
M.P. Manns ◽  
S. Kubicka ◽  
F. Kühnel

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Stefan Grote ◽  
Guillermo Ureña-Bailén ◽  
Kenneth Chun-Ho Chan ◽  
Caroline Baden ◽  
Markus Mezger ◽  
...  

Background: Melanoma is the most lethal of all skin-related cancers with incidences continuously rising. Novel therapeutic approaches are urgently needed, especially for the treatment of metastasizing or therapy-resistant melanoma. CAR-modified immune cells have shown excellent results in treating hematological malignancies and might represent a new treatment strategy for refractory melanoma. However, solid tumors pose some obstacles for cellular immunotherapy, including the identification of tumor-specific target antigens, insufficient homing and infiltration of immune cells as well as immune cell dysfunction in the immunosuppressive tumor microenvironment (TME). Methods: In order to investigate whether CAR NK cell-based immunotherapy can overcome the obstacles posed by the TME in melanoma, we generated CAR NK-92 cells targeting CD276 (B7-H3) which is abundantly expressed in solid tumors, including melanoma, and tested their effectivity in vitro in the presence of low pH, hypoxia and other known factors of the TME influencing anti-tumor responses. Moreover, the CRISPR/Cas9-induced disruption of the inhibitory receptor NKG2A was assessed for its potential enhancement of NK-92-mediated anti-tumor activity. Results: CD276-CAR NK-92 cells induced specific cytolysis of melanoma cell lines while being able to overcome a variety of the immunosuppressive effects normally exerted by the TME. NKG2A knock-out did not further improve CAR NK-92 cell-mediated cytotoxicity. Conclusions: The strong cytotoxic effect of a CD276-specific CAR in combination with an “off-the-shelf” NK-92 cell line not being impaired by some of the most prominent negative factors of the TME make CD276-CAR NK-92 cells a promising cellular product for the treatment of melanoma and beyond.


2021 ◽  
Author(s):  
Yadan Zheng ◽  
Zhanzhan Zhang ◽  
Qi Liu ◽  
Ying Wang ◽  
Jialei Hao ◽  
...  

Photodynamic therapy has great potential for tumor ablation and the activation of antitumor immune responses. However, its overall therapeutic efficiency is often limited by the immunosuppressive tumor microenvironment. We developed...


2020 ◽  
Vol 6 (3) ◽  
pp. eaax5032 ◽  
Author(s):  
Kuan-Wei Huang ◽  
Fu-Fei Hsu ◽  
Jiantai Timothy Qiu ◽  
Guann-Jen Chern ◽  
Yi-An Lee ◽  
...  

While immunotherapy holds great promise for combating cancer, the limited efficacy due to an immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of cancer immunotherapy. Here, we report a combinatorial immunotherapy approach that uses a highly efficient and tumor-selective gene carrier to improve anticancer efficacy and circumvent the systemic toxicity. In this study, we engineered tumor-targeted lipid-dendrimer-calcium-phosphate (TT-LDCP) nanoparticles (NPs) with thymine-functionalized dendrimers that exhibit not only enhanced gene delivery capacity but also immune adjuvant properties by activating the stimulator of interferon genes (STING)–cGAS pathway. TT-LDCP NPs delivered siRNA against immune checkpoint ligand PD-L1 and immunostimulatory IL-2–encoding plasmid DNA to hepatocellular carcinoma (HCC), increased tumoral infiltration and activation of CD8+ T cells, augmented the efficacy of cancer vaccine immunotherapy, and suppressed HCC progression. Our work presents nanotechnology-enabled dual delivery of siRNA and plasmid DNA that selectively targets and reprograms the immunosuppressive tumor microenvironment to improve cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document