scholarly journals Alternative Strategies to Inhibit Tumor Vascularization

2019 ◽  
Vol 20 (24) ◽  
pp. 6180 ◽  
Author(s):  
Alessia Brossa ◽  
Lola Buono ◽  
Sofia Fallo ◽  
Alessandra Fiorio Pla ◽  
Luca Munaron ◽  
...  

Endothelial cells present in tumors show different origin, phenotype, and genotype with respect to the normal counterpart. Various mechanisms of intra-tumor vasculogenesis sustain the complexity of tumor vasculature, which can be further modified by signals deriving from the tumor microenvironment. As a result, resistance to anti-VEGF therapy and activation of compensatory pathways remain a challenge in the treatment of cancer patients, revealing the need to explore alternative strategies to the classical anti-angiogenic drugs. In this review, we will describe some alternative strategies to inhibit tumor vascularization, including targeting of antigens and signaling pathways overexpressed by tumor endothelial cells, the development of endothelial vaccinations, and the use of extracellular vesicles. In addition, anti-angiogenic drugs with normalizing effects on tumor vessels will be discussed. Finally, we will present the concept of endothelial demesenchymalization as an alternative approach to restore normal endothelial cell phenotype.

2020 ◽  
Author(s):  
Emmi Helle ◽  
Minna Ampuja ◽  
Alexandra Dainis ◽  
Laura Antola ◽  
Elina Temmes ◽  
...  

AbstractRationaleCell-cell interactions are crucial for the development and function of the organs. Endothelial cells act as essential regulators of tissue growth and regeneration. In the heart, endothelial cells engage in delicate bidirectional communication with cardiomyocytes. The mechanisms and mediators of this crosstalk are still poorly known. Furthermore, endothelial cells in vivo are exposed to blood flow and their phenotype is greatly affected by shear stress.ObjectiveWe aimed to elucidate how cardiomyocytes regulate the development of organotypic phenotype in endothelial cells. In addition, the effects of flow-induced shear stress on endothelial cell phenotype were studied.Methods and resultsHuman induced pluripotent stem cell (hiPSC) -derived cardiomyocytes and endothelial cells were grown either as a monoculture or as a coculture. hiPS-endothelial cells were exposed to flow using the Ibidi-pump system. Single-cell RNA sequencing was performed to define cell populations and to uncover the effects on their transcriptomic phenotypes. The hiPS-cardiomyocyte differentiation resulted in two distinct populations; atrial and ventricular. Coculture had a more pronounced effect on hiPS-endothelial cells compared to hiPS-cardiomyocytes. Coculture increased hiPS-endothelial cell expression of transcripts related to vascular development and maturation, cardiac development, and the expression of cardiac endothelial cell -specific genes. Exposure to flow significantly reprogrammed the hiPS-endothelial cell transcriptome, and surprisingly, promoted the appearance of both venous and arterial clusters.ConclusionsSingle-cell RNA sequencing revealed distinct atrial and ventricular cell populations in hiPS-cardiomyocytes, and arterial and venous-like cell populations in flow exposed hiPS-endothelial cells. hiPS-endothelial cells acquired cardiac endothelial cell identity in coculture. Our study demonstrated that hiPS-cardiomoycytes and hiPS-endothelial cells readily adapt to coculture and flow in a consistent and relevant manner, indicating that the methods used represent improved physiological cell culturing conditions that potentially are more relevant in disease modelling. In addition, novel cardiomyocyte-endothelial cell crosstalk mediators were revealed.


2007 ◽  
Vol 25 (7) ◽  
pp. 852-861 ◽  
Author(s):  
Ronald J. Buckanovich ◽  
Dimitra Sasaroli ◽  
Anne O'Brien-Jenkins ◽  
Jeffrey Botbyl ◽  
Rachel Hammond ◽  
...  

Purpose This study aimed to identify novel ovarian cancer biomarkers and potential therapeutic targets through molecular analysis of tumor vascular cells. Methods Immunohistochemistry-guided laser-capture microdissection and genome-wide transcriptional profiling were used to identify genes that were differentially expressed between vascular cells from human epithelial ovarian cancer and healthy ovaries. Tumor vascular markers (TVMs) were validated through quantitative real-time polymerase chain reaction (qRT-PCR) of immunopurified tumor endothelial cells, in situ hybridization, immunohistochemistry, and Western blot analysis. TVM expression in tumors and noncancerous tissues was assessed by qRT-PCR and was profiled using gene expression data. Results We identified a tumor vascular cell profile of ovarian cancer that was distinct from the vascular profile of normal ovary and other tumors. We validated 12 novel ovarian TVMs. These were expressed by immunopurified tumor endothelial cells and localized to tumor vasculature. Select TVMs were found to be specifically expressed in ovarian cancer and were absent in all normal tissues tested, including female reproductive tissues with physiologic angiogenesis. Many ovarian TVMs were expressed by a variety of other solid tumors. Finally, overexpression of any one of three ovarian TVMs by vascular cells was associated with decreased disease-free interval (all P < .005). Conclusion We have identified for the first time the molecular profile of ovarian tumor vasculature. We demonstrate that TVMs may serve as potential biomarkers and molecular targets for ovarian cancer and a variety of other solid tumors.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5990 ◽  
Author(s):  
Fuad M. Alhawarat ◽  
Hana M. Hammad ◽  
Majd S. Hijjawi ◽  
Ahmad S. Sharab ◽  
Duaa A. Abuarqoub ◽  
...  

Background Breast cancer is the most common type of cancer among females. Hypoxia mediates cancer hallmarks and results from reduced oxygen level due to irregularities in tumor vascularization or when the tumor size prevents oxygen diffusion and triggers angiogenesis to compensate for low oxygen. Cancer stem cells (CSCs) are a rare subpopulation, able to self-renew and to give rise to tumor-initiating cells. It is proposed that CSCs’ secretions help to recruit endothelial cells via angiogenic factors to establish tumor vascularization. In the tumor microenvironment, the effect of hypoxia on CSCs and the impact of their secretions on triggering angiogenesis and tumor vascularization remain questionable. In this study, three-dimensional (3D) CSCs derived from MCF-7 were directly exposed to repetitive long-term cycles of hypoxia to assess its effect on CSCs and then to evaluate the role of the hypoxic CSCs’ (CSCsHYP) secretions in angiogenesis using (HUVECs) as a model for tumor neovascularization response. Methods CSCs derived from MCF-7 cell-line were expanded under repetitive, strictly optimized, long-term/continuous and intermittent hypoxic shots for almost four months to assess hypoxic effect on CSCs, sorted based on CD44+/CD24− biomarkers. Hypoxic phenotype of CSCsHYP was evaluated by assessing the acquired chemoresistance using MTT assay and elevated stemness properties were assessed by flow cytometry. To evaluate the effect of the secretions from CSCsHYP on angiogenesis, HUVECs were exposed to CSCsHYP conditioned-medium (CdM)—in which CSCs had been previously grown—to mimic the tumor microenvironment and to assess the effect of the secretions from CSCsHYP on the HUVECs’ capability of tube formation, migration and wound healing. Additionally, co-culture of CSCsHYP with HUVECs was performed. Results CSCsHYP acquired higher chemoresistance, increased stemness properties and obtained greater propagation, migration, and wound healing capacities, when compared to CSCs in normoxic condition (CSCsNOR). HUVECs’ tube formation and migration abilities were mediated by hypoxic (CSCs) conditioned media (CdM). Discussion This study demonstrates that chemoresistant and migrational properties of CSCs are enhanced under hypoxia to a certain extent. The microenvironment of CSCsHYP contributes to tumor angiogenesis and migration. Hypoxia is a key player in tumor angiogenesis mediated by CSCs.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Burak Ozgür ◽  
Hans Christian Cederberg Helms ◽  
Erica Tornabene ◽  
Birger Brodin

Abstract Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Brian R Wamhoff ◽  
Michael B Simmers ◽  
Zhu Chen ◽  
Yiming Xu ◽  
Ling-jie Kong ◽  
...  

Thrombus formation in the left atrial appendage (LAA) of the heart is a source of stroke risk in patients with atrial fibrillation (Afib). Strategies to prevent thromboembolism from the LAA via restoration of normal rhythm or prevention of clot formation are limited by lack of adequate human surrogate systems that recapitulate the biology ex vivo. Endothelial cell phenotype and function in blood vessels and chambers of the heart are regulated in part by regional hemodynamics. Blood flow shear forces in the LAA are substantially altered during Afib. Thus, we hypothesized that Afib-induced alterations in hemodynamics directly impacts the thrombotic potential of the endothelium in the LAA. To test this, human primary aortic endothelial cell cultures were primed under hemodynamic shear forces simulating the human LAA during normal sinus rhythm for 24 hrs and continued under sinus rhythm or switched to simulate Afib for an additional 24 hrs. Compared to sustained sinus rhythm, Afib hemodynamics suppressed genes (qRTPCR) that define a healthy/quiescent endothelial cell phenotype (e.g. KLF2 and NOS3/eNOS) while inducing the pro-thrombotic gene F3 (tissue factor) and suppressing ADAMSTS13, MMP14 and TIMP2. To determine whether the observed molecular response produced a functional prothrombotic phenotype, hemodynamic primed aortic endothelial cells were exposed to dilute (~27% final concentration) human platelet-free plasma supplemented with Alexa488-labeled human fibrinogen, corn trypsin inhibitor and calcium. Cleavage of fibrinogen to fibrin and concomitant deposition on the endothelium was measured by quantitative confocal microscopy. When exposed to Afib hemodynamics, endothelial cells supported significant fibrin deposition that extended to greater depth (i.e., thicker) on the endothelium compared to sinus rhythm hemodynamics. In conclusion, we show for the first time a direct mechanistic link between changes in LAA hemodynamics associated with development of Afib and functional alterations in the thrombotic potential of the endothelium. This study produced a novel insight enabled by studying potential triggers of thrombosis in a context that more closely mimics the normal and pathological human in vivo environment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4315-4315
Author(s):  
Kristi L Allen ◽  
Mukesh K Jain ◽  
Keith R McCrae

Abstract Abstract 4315 Antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy loss in the presence of antiphospholipid antibodies (APLA). These antibodies are directed primarily against phospholipid-bound β2-glycoprotein I (β2GPI). Anti-β2GPI antibodies activate endothelial cells, enhancing the expression of adhesion molecules and tissue factor, and the secretion of proinflammatory cytokines. Krüppel-like factors (KLF) regulate endothelial cell inflammatory responses. KLF2 and KLF4 mediate anti-atherosclerotic and anti-inflammatory effects in endothelial cells, and we have hypothesized that alterations in the expression or activity of KLF2 or KLF4 may modulate the endothelial cell response to APLA. In preliminary studies, we have observed that endothelial cell activation induced by APLA/anti-β2GPI antibodies inhibits the expression of KLF2 and KLF4, and as demonstrated by our laboratory and others, is accompanied by activation of NF-kB. However, forced expression of KLF2 or KLF4 by plasmid-mediated transfection of endothelial cells inhibits neither the phosphorylation of ser536 of the p65 subunit of NF-kB, nor the nuclear translocation of p65 in response to APLA/anti-β2GPI antibodies. Despite the lack of effect on forced KLF2 or KLF4 expression in endothelial cells on p65 phosphorylation, expression of either of these factors inhibits NF-κB transcriptional activity with corresponding inhibition of cellular activation as measured by inhibition of cell-surface E-selectin expression as well as E-selectin promoter activity. Inhibition of NF-kB transcriptional activity by KLF2 and KLF4 appears to be due to recruitment of the CBP/p300 cofactor away from NF-kB by KLF2 or KLF4, since augmenting the cellular pool of CBP/p300 by transfection restores NF-κB activity and endothelial cell activation responses. Similarly, treatment of APLA-activated endothelial cells with CBP/p300 siRNA inhibits NF-kB transcriptional activity regardless of the levels of KLF2 or KLF4. These data suggest that APLA inhibit KLF expression and that these changes promote the acquisition of a prothrombotic endothelial cell phenotype. CBP/p300 may serve as a molecular switch that determines the relative antithrombotic activities of KLFs versus the prothrombotic, inflammatory responses induced by NF-kB in APLA/anti-β2GPI antibody activated endothelial cells. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 5 (4) ◽  
pp. 335-341 ◽  
Author(s):  
Michiel Wagemakers ◽  
Mariska Sie ◽  
Eelco W. Hoving ◽  
Grietje Molema ◽  
Eveline S. J. M. de Bont ◽  
...  

Object This study aimed to characterize the pediatric intracranial ependymoma vasculature in terms of angiogenic activity and maturation status so as to provide indications for the applicability of vessel-targeted therapy in cases of pediatric intracranial ependymoma. Methods Tumor samples obtained in patients with ependymomas were immunohistochemically (double) stained for Ki 67/CD34, caspase 3a/CD34, vascular endothelial growth factor (VEGF)–A, –B, –C, –D, collagen Type IV, and smooth muscle actin to determine microvessel density, tumor and endothelial cell proliferation and apoptotic fraction, the relative expression of VEGF family members, and the coverage of the tumor endothelial cells by basal membrane and pericytes. Messenger RNA expression of angiopoietin-1 and -2 was analyzed by real-time reverse transcriptase polymerase chain reaction. These data were compared with those obtained in a glioblastoma series. Results Despite a low endothelial cell turnover, the microvessel density of ependymomas was similar to that of glioblastomas. In ependymomas the expression of VEGF-A was within the range of the variable expression in glioblastomas. The staining intensities of VEGF-B, -C, and -D in ependymomas were significantly lower (p < 0.001). The expression of angiopoietin-1 was higher in ependymomas than in glioblastomas (p = 0.03), whereas angiopoietin-2 expression was similar. The coverage of tumor endothelial cells with basal membrane and pericytes was more complete in ependymomas (p = 0.009 and p = 0.022, respectively). Conclusions The ependymoma vasculature is relatively mature and has little angiogenic activity compared with malignant gliomas. Therefore, the window for vessel normalization as a therapeutic aim might be considered small. However, the status of the tumor vasculature may not be a reliable predictor of treatment effect. Therefore, possible benefits of antiangiogenic treatment cannot be excluded beforehand in patients with ependymomas.


Sign in / Sign up

Export Citation Format

Share Document