scholarly journals Importance of Protection Service Against Erosion and Storm Events Provided by Coastal Ecosystems Under Climate Change Scenarios

2021 ◽  
Vol 8 ◽  
Author(s):  
Jacinto Cunha ◽  
Fábio Santos Cardona ◽  
Ana Bio ◽  
Sandra Ramos

Increasing sea level rise (SLR), and frequency and intensity of storms, paired with degrading ecosystems, are exposing coastal areas to higher risks of damage by storm events. Coastal natural habitats, such as dunes or saltmarshes, can reduce exposure of coastlines to these events and help to reduce the impacts and the potential damage to coastal property. The goal of our study was to evaluate the current vulnerability of the Portuguese northern coast to erosion and flooding caused by extreme events and to assess the contribution of natural habitats in reducing both vulnerability and property damages considering SLR scenarios. The Integrated Valuation of Environmental Services and Trade-offs (InVEST) Coastal Vulnerability model was used to produce an Exposure Index (EI) for the northern Portuguese coastline, for the current situation, and for future International Panel for Climate Change (IPCC) scenarios Representative Concentration Pathway (RCP) 2.6, RCP4.5, and RCP8.5, considering the presence and absence of coastal habitats. Results showed an increase in exposure with rising sea levels and expansion of high vulnerability areas. Coastal habitats contributed to a 28% reduction of high exposed segments for the Current scenario, corresponding to a potential reduction of coastal property damage of 105 M€ during extreme events. For the SLR scenarios, coastal habitats could potentially reduce the amount of property damage by 190 M€ in 2050 and 285 M€ in 2100, considering RCP8.5 projections. This study highlighted the importance of natural habitats in protecting vulnerable coastlines and reducing the potential damages to properties from flooding. Such results can be incorporated in management plans and support decision-making toward implementing an ecosystem-based approach to increase the resilience of coastal communities to cope with future environmental changes.

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Felipe A Briceño ◽  
Quinn P Fitzgibbon ◽  
Elias T Polymeropoulos ◽  
Iván A Hinojosa ◽  
Gretta T Pecl

Abstract Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator–prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)–spiny lobster (Jasus edwardsii) interaction as a predator–prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: ‘current’ (20°C) and ‘warming’ (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or ‘freezing’ response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.


2021 ◽  
Author(s):  
◽  
Jacob Pastor Paz

<p><b>Three manuscripts form the basis of this dissertation exploring the effect of extreme precipitation and climate change on residential property in New Zealand. The first manuscript investigates the public insurer’s expected future liabilities, given future climate projections. Specifically, it examines the effect of extreme precipitation on direct property damage associated with rainfall-induced landslides, storms and floods. This study applies a fixed-effects panel regression model using claim data linked to extreme precipitation data over 2000-2017 and future climate change scenarios until 2100. The results show that liabilities will increase more if future greenhouse gasses emissions are higher. At the aggregate level, the percent change between past and future liabilities ranges between an increase of 7 to 8% higher in the next 20 years, and an increase between 9 to 25% increase by the end of the century, depending on the greenhouse gases emissions scenario.</b></p> <p>The second manuscript examines the risk of property damage from landslides associated with extreme precipitation. The focus is on the Nelson region as it displays the highest number of claims and pay-outs relative to its population and residential stock asset, and two thirds of the pay-outs come from a single event. The focus is on this event. This research combines past insurance claim data with geographic and sociodemographic data to estimate probability of damage, which is then combined with property replacement values and damage-ratio information to calculate the expected loses and map the spatial distribution of risk. The study integrates into the risk estimates the impact of climate change on precipitation based on an ‘attribution’ study. The analysis shows that slope and social deprivation play a significant role in the probability of damage. Furthermore, higher expected losses are associated with higher property values. </p> <p>The third manuscript studies the current and future risk of property damage from floods associated with extreme precipitation and climate change. The focus is on the most expensive event on record. This study applies a logistic cross-sectional regression model that exploits spatial variation of rainfall intensity-duration-frequency (with and without the effect of climate change), while controlling for other factors that might make a property more or less likely to experience damage. The expected monetary losses are calculated by factoring in the likelihood of flood damage derived from the regression model, property replacement values, and property vulnerability (based on flood-depth fragility functions). The results show that highest losses are associated with lowest annual exceedance probabilities (AEPs), still, sizeable losses are associated with higher AEPs. In this case, the effect of climate change for different emissions scenarios is too small to cause an economically meaningful increase in risk levels in the next 80 years (2100).</p>


Author(s):  
Andrea Momblanch ◽  
Nachiket Kelkar ◽  
Gill Braulik ◽  
Jagdish Krishnaswamy ◽  
Ian P. Holman

AbstractIn India’s Indo-Gangetic plains, river flows are strongly altered by dams, barrages and water diversions for irrigation, urban supply, hydropower production and flood control. Human demands for freshwater are likely to intensify with climatic and socio-economic changes, exacerbating trade-offs between different sustainable development goals (SDGs) dependent on freshwater (e.g. SDG2, SDG6, SDG7, SDG11 and SDG15). Freshwater ecosystems and endangered aquatic species are not explicitly addressed in the SDGs, but only nested as targets within SDG6 and SDG15. Thus, there is high risk that decisions to advance other SDGs may overlook impacts on them. In this study, we link a water resource systems model and a forecast extinction risk model to analyze how alternative conservation strategies in the regulated Beas River (India) affect the likelihood of survival of the only remaining population of endangered Indus River Dolphins (IRD) in India in the face of climate change-induced impacts on river hydrology and human water demands, explicitly accounting for potential trade-offs between related SDGs. We find that the frequency of low flow released from the main reservoir may increase under some climate change scenarios, significantly affecting the IRD population. The strongest trade-offs exist between the persistence of IRD, urban water supply and hydropower generation. The establishment of ecologically informed reservoir releases combined with IRD population supplementation enhances the probability of survival of the IRD and is compatible with improving the status of relevant SDGs. This will require water managers, conservation scientists, and other stakeholders to continue collaborating to develop holistic water management strategies.


2018 ◽  
Author(s):  
Luis Miguel Pardo ◽  
Ignacio Garrido ◽  
Paulina Bruning ◽  
Charlotte Carrier ◽  
Rossana Reveco ◽  
...  

Western Antarctic shows one of the fastest responses to climate change on Earth. Glacier meltdown and freshening are perhaps the most conspicuous evidence of anthropogenic impacts, that together with ice scouring can strongly modify benthic communities. The spatial extension of these impacts has been rarely explored in rocky subtidal environments. This study describes changes in benthic communities across glacier and bathymetric gradient in Fildes Bay, Antarctica. Suction samples were taken from four sites at increasing distance from the Collin glacier (0 - 2.5 – 5 - 7 km) and three depths (5 – 10 - 15 m). Macrofaunal diversity increased with depth across all distances from the glacier; these changes were associated with the increase in diversity of amphipods and echinoderms. The lowest and highest species diversity occurred at zero and two km from the glacier, indicating a strong, but localized, glacier effect. Variation in salinity tolerance and the abundance of key habitat forming algae could explain the spatial variation in these communities. This result remarks the importance of facilitation as a structuring force in Antarctic benthic communities. We suggest that the fate of communities in future climate-change scenarios will depend on how habitat-forming species respond to these environmental changes.


2012 ◽  
Vol 16 (11) ◽  
pp. 4401-4416 ◽  
Author(s):  
T. J. Coulthard ◽  
J. Ramirez ◽  
H. J. Fowler ◽  
V. Glenis

Abstract. Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from global or regional climate models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade". This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50-yr return period events are predicted to be 5 times larger than baseline values.


2021 ◽  
Vol 13 (3) ◽  
pp. 1493
Author(s):  
Chunyan Cao ◽  
Jun Tao

Predicting the geographic distribution of a species together with its response to climate change is of great significance for biodiversity conservation and ecosystem sustainable development. Zelkova serrata is an excellent shelterbelt tree species that is used for soil and water conservation due to the fact of its well-developed root system, strong soil fixation, and wind resistance. However, the wild germplasm resources of Z. serrata have been increasingly depleted due to the fact of its weak ability to regenerate naturally and the unprecedented damage humans have caused to the natural habitats. The present work using Maxent aimed to model the current potential distribution of this species as well as in the future, assess how various environmental factors affect species distribution, and identify the shifts in the distribution of this species in various climate change scenarios. Our findings show habitat in provinces in the southern Qinling and Huai river basins have high environmental suitability. Temperature seasonality, annual precipitation, annual mean temperature, and warmest quarter precipitation were the most important factors affecting its distribution. Under a climate change scenario, the appropriate habitat range showed northeastward expansion geographically. The results in the present work can lay the foundation for the cultivation and conservation of Z. serrata.


Author(s):  
Rajashekhar S. Laddimath ◽  
Nagraj S. Patil ◽  
P. S. Rao ◽  
Nagendra

Abstract In Bhima sub-basin, the water sector is at high demand and in critical stress due to rapid urbanization. The past few decades witnessed extreme events and seasonal shifts due to anthropogenic activity triggered climate change. Thus, to evaluate the variability of extreme events, assessing the historical and future trends of precipitation in climate change scenarios is vital for making comprehensive mitigation and adaptation strategies. This paper examines the drought-prone regions by studying spatio-temporal variation of drought scenarios using the Standard Precipitation Index (SPI). Change factor method is used to downscale precipitation data from general circulation model (GCM) outputs under four Representative Concentration Pathway (RCP) scenarios to project future downscaled precipitation, to be input to examine the drought for 12 months. GCM and scenario uncertainty in climate change impact assessments are examined using box-whisker plots. Temporal variation for 12-month SPI shows significant changes over RCP scenarios. For the beginning of the period, 2021 precipitation is scanty for RCP 2.6 and 4.5 scenarios. Mild to moderate and severe drought events for the RCP 2.6 scenario are more predominant. Severe drought events under the RCP 6.0 scenario dominates over others. Lastly, the inconsistent pattern of drought events for RCP 8.5 is reported.


Author(s):  
Katja Seltmann ◽  
Julie Allen ◽  
Brian Brown ◽  
Adrian Carper ◽  
Michael Engel ◽  
...  

While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee network of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world.


2021 ◽  
Author(s):  
Jacob Pastor Paz

<p><b>Three manuscripts form the basis of this dissertation exploring the effect of extreme precipitation and climate change on residential property in New Zealand. The first manuscript investigates the public insurer’s expected future liabilities, given future climate projections. Specifically, it examines the effect of extreme precipitation on direct property damage associated with rainfall-induced landslides, storms and floods. This study applies a fixed-effects panel regression model using claim data linked to extreme precipitation data over 2000-2017 and future climate change scenarios until 2100. The results show that liabilities will increase more if future greenhouse gasses emissions are higher. At the aggregate level, the percent change between past and future liabilities ranges between an increase of 7 to 8% higher in the next 20 years, and an increase between 9 to 25% increase by the end of the century, depending on the greenhouse gases emissions scenario.</b></p> <p>The second manuscript examines the risk of property damage from landslides associated with extreme precipitation. The focus is on the Nelson region as it displays the highest number of claims and pay-outs relative to its population and residential stock asset, and two thirds of the pay-outs come from a single event. The focus is on this event. This research combines past insurance claim data with geographic and sociodemographic data to estimate probability of damage, which is then combined with property replacement values and damage-ratio information to calculate the expected loses and map the spatial distribution of risk. The study integrates into the risk estimates the impact of climate change on precipitation based on an ‘attribution’ study. The analysis shows that slope and social deprivation play a significant role in the probability of damage. Furthermore, higher expected losses are associated with higher property values. </p> <p>The third manuscript studies the current and future risk of property damage from floods associated with extreme precipitation and climate change. The focus is on the most expensive event on record. This study applies a logistic cross-sectional regression model that exploits spatial variation of rainfall intensity-duration-frequency (with and without the effect of climate change), while controlling for other factors that might make a property more or less likely to experience damage. The expected monetary losses are calculated by factoring in the likelihood of flood damage derived from the regression model, property replacement values, and property vulnerability (based on flood-depth fragility functions). The results show that highest losses are associated with lowest annual exceedance probabilities (AEPs), still, sizeable losses are associated with higher AEPs. In this case, the effect of climate change for different emissions scenarios is too small to cause an economically meaningful increase in risk levels in the next 80 years (2100).</p>


Sign in / Sign up

Export Citation Format

Share Document