scholarly journals A Complete Two-Dimensional Avalanche Photodiode Based on MoTe2−WS2−MoTe2 Heterojunctions With Ultralow Dark Current

2021 ◽  
Vol 8 ◽  
Author(s):  
Tenghui Ouyang ◽  
Ximiao Wang ◽  
Shaojing Liu ◽  
Huanjun Chen ◽  
Shaozhi Deng

Two-dimensional (2D)-material-based photodetectors have recently received great attention due to their potentials in developing ultrathin and highly compact devices. Avalanche photodiodes (APDs) are widely used in a variety of fields such as optical communications and bioimaging due to their fast responses and high sensitivities. However, conventional APDs based on bulk materials are limited by their relatively high dark current. One solution to tackle this issue is by employing nanomaterials and nanostructures as the active layers for APDs. In this study, we proposed and fabricated an atomically-thick APD based on heterojunctions formed by 2D transition metal dichalcogenides (TMDs). A typical device structure was formed by stacking a semiconducting monolayer WS2 onto two metallic few-layer MoTe2 flakes. Due to the Schottky barrier formed between the TMD layers and their atomic thicknesses, the dark current of the APD is greatly reduced down to 93 pA. In addition, the APD can operate through a broad spectral range from visible to near-infrared region, with a responsivity of 6.02 A/W, an external quantum efficiency of 1,406%, and an avalanche gain of 587. We believe that the 2D APD demonstrated here provides a feasible approach for developing all-2D optoelectronic devices with simultaneous high-sensitivity and low noise.

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1557-1577 ◽  
Author(s):  
Xianguang Yang ◽  
Baojun Li

AbstractTransition metal dichalcogenides are two-dimensional semiconductors with strong in-plane covalent and weak out-of-plane interactions, resulting in exfoliation into monolayers with atomically thin thickness. This creates a new era for the exploration of two-dimensional physics and device applications. Among them, MoS2 is stable in air and easily available from molybdenite, showing tunable band-gaps in the visible and near-infrared waveband and strong light-matter interactions due to the planar exciton confinement effect. In the single-layer limit, monolayer MoS2 exhibits direct band-gaps and bound excitons, which are fundamentally intriguing for achieving the nanophotonic and optoelectronic applications. In this review, we start from the characterization of monolayer MoS2 in our group and understand the exciton modes, then explore thermal excitons and band renormalization in monolayer MoS2. For nanophotonic applications, the recent progress of nanoscale laser source, exciton-plasmon coupling, photoluminescence manipulation, and the MoS2 integration with nanowires or metasurfaces are overviewed. Because of the benefits brought by the unique electronic and mechanical properties, we also introduce the state of the art of the optoelectronic applications, including photoelectric memory, excitonic transistor, flexible photodetector, and solar cell. The critical applications focused on in this review indicate that MoS2 is a promising material for nanophotonics and optoelectronics.


2008 ◽  
Vol 1076 ◽  
Author(s):  
M. Nurul Abedin ◽  
Tamer F Refaat ◽  
Oleg V Sulima ◽  
Farzin Amzajerdian

ABSTRACTInfrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.


2011 ◽  
Vol 189-193 ◽  
pp. 3745-3749 ◽  
Author(s):  
Jing Guo ◽  
He Zhang ◽  
Xiang Jin Zhang ◽  
Xiao Feng Wang

For the extremely weak echo signal and the poor anti-interference ability of the long-distance laser fuze, the high signal noise ratio (SNR) receiving system based on laser coding mode was designed. In order to improve the weak signal receiving ability, the avalanche photodiode (APD) with high sensitivity, low noise and high gain was adopted. And the optimum multiplication factor of APD when the system obtains the highest SNR was analyzed and calculated. Then, the amplifying circuit optimum matching with APD and the decoding circuit were designed, and validated by the experiments. The theory and experiment results indicate that the design is efficiency and capable to the long distance laser fuze, the system can exactly decode the weak laser coding signals received and export the ignition signal.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1359
Author(s):  
Yaxin Yu ◽  
Jiangong Cui ◽  
Guochang Liu ◽  
Rongyu Zhao ◽  
Min Zhu ◽  
...  

To reduce the loss of the metal–insulator–metal waveguide structure in the near-infrared region, a plasmonic nanosensor structure based on a racetrack resonant cavity is proposed herein. Through finite element simulation, the transmission spectra of the sensor under different size parameters were analyzed, and its influence on the sensing characteristics of the system was examined. The analysis results show that the structure can excite the double Fano resonance, which has a distinctive dependence on the size parameters of the sensor. The position and line shape of the resonance peak can be adjusted by changing the key parameters. In addition, the sensor has a higher sensitivity, which can reach 1503.7 nm/RIU when being used in refractive index sensing; the figure of merit is 26.8, and it can reach 0.75 nm/°C when it is used in temperature sensing. This structure can be used in optical integrated circuits, especially high-sensitivity nanosensors.


2021 ◽  
Author(s):  
Moutusi De ◽  
Vinod Kumar Singh

Abstract In this article, an efficient high birefringent D-shaped photonic crystal fiber (HB-D-PCF) plasmonic refractive index sensor is reported. It is able to work over a long low refractive index (RI) analyte range from 1.29 to 1.36. This modified simple structured hexagonal PCF has high birefringence in the near-infrared region. A thin gold film protected by a titanium dioxide (TiO2) layer is deposited on the D-surface of the PCF which acts as surface plasmon active layer. The sensor consists of an analyte channel on the top of the fiber. The performance of the HB-D-PCF is analyzed based on finite element method (FEM). Both wavelength and amplitude interrogation techniques are applied to study the sensing performance of the optimized sensor. Numerical results show wavelength and amplitude sensitivity of 9245nm/RIU and 1312 RIU-1 respectively with high resolution. Owing to the high sensitivity, long range sensing ability as well as spectral stability the designed HB-D-PCF SPR sensor is a potential candidate for water pollution control, glucose concentration testing, biochemical analyte detection as well as portable device fabrication.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 33
Author(s):  
Antoni Rogalski

The paper compares two-dimensional (2D) material detectors performance with traditionally and commercially available ones operating in high temperature conditions. The most effective single graphene detectors are THz detectors which utilize plasma rectification phenomena in FETs. Most of 2D layered semiconducting material photodetectors operate at the visible and near-infrared regions and generally their high sensitivity does not coincide with a fast response time, which limits real detector functions.


1982 ◽  
Vol 40 (3) ◽  
pp. 279-281 ◽  
Author(s):  
K. Arishima ◽  
H. Hiratsuka ◽  
A. Tate ◽  
T. Okada

2011 ◽  
Vol 702-703 ◽  
pp. 507-510
Author(s):  
Bob B. He

The two most important advances in two-dimensional x-ray diffraction (XRD2) are area detectors for collecting 2D diffraction patterns and algorithms in analyzing 2D diffraction patterns. The VÅNTEC-500 area detector represents the innovation in detector technology. The combination of its large active area, high sensitivity, high count rate, high resolution and low noise, makes it the technology of choice for many applications, including texture analysis. A 2D diffraction pattern contains information in a large solid angle which can be described by the diffraction intensity distribution in both 2θ and g directions. The texture information appears in a 2D diffraction pattern as intensity variation in g direction. The intensity variation represents the orientation distribution of the crystallites in a polycrystalline material. The diffraction vector orientation regarding to the sample orientation can be obtained by vector transformation from the laboratory space to the sample space. The fundamental equations for texture analysis are derived from the unit vector expression in the sample space.


2017 ◽  
Vol 5 (7) ◽  
pp. 1591-1595 ◽  
Author(s):  
Nan Zhou ◽  
Bing Xu ◽  
Lin Gan ◽  
Junpei Zhang ◽  
Junbo Han ◽  
...  

A hybrid (NaYF4:Yb/Er@NaYF4:Nd/Yb)/MoS2 device structure is proposed to realize narrow spectral window photodetection in the near-infrared region.


Sign in / Sign up

Export Citation Format

Share Document