Recent Advances in Texture Measurement Using Two-Dimensional Detector

2011 ◽  
Vol 702-703 ◽  
pp. 507-510
Author(s):  
Bob B. He

The two most important advances in two-dimensional x-ray diffraction (XRD2) are area detectors for collecting 2D diffraction patterns and algorithms in analyzing 2D diffraction patterns. The VÅNTEC-500 area detector represents the innovation in detector technology. The combination of its large active area, high sensitivity, high count rate, high resolution and low noise, makes it the technology of choice for many applications, including texture analysis. A 2D diffraction pattern contains information in a large solid angle which can be described by the diffraction intensity distribution in both 2θ and g directions. The texture information appears in a 2D diffraction pattern as intensity variation in g direction. The intensity variation represents the orientation distribution of the crystallites in a polycrystalline material. The diffraction vector orientation regarding to the sample orientation can be obtained by vector transformation from the laboratory space to the sample space. The fundamental equations for texture analysis are derived from the unit vector expression in the sample space.

2021 ◽  
Vol 8 ◽  
Author(s):  
Tenghui Ouyang ◽  
Ximiao Wang ◽  
Shaojing Liu ◽  
Huanjun Chen ◽  
Shaozhi Deng

Two-dimensional (2D)-material-based photodetectors have recently received great attention due to their potentials in developing ultrathin and highly compact devices. Avalanche photodiodes (APDs) are widely used in a variety of fields such as optical communications and bioimaging due to their fast responses and high sensitivities. However, conventional APDs based on bulk materials are limited by their relatively high dark current. One solution to tackle this issue is by employing nanomaterials and nanostructures as the active layers for APDs. In this study, we proposed and fabricated an atomically-thick APD based on heterojunctions formed by 2D transition metal dichalcogenides (TMDs). A typical device structure was formed by stacking a semiconducting monolayer WS2 onto two metallic few-layer MoTe2 flakes. Due to the Schottky barrier formed between the TMD layers and their atomic thicknesses, the dark current of the APD is greatly reduced down to 93 pA. In addition, the APD can operate through a broad spectral range from visible to near-infrared region, with a responsivity of 6.02 A/W, an external quantum efficiency of 1,406%, and an avalanche gain of 587. We believe that the 2D APD demonstrated here provides a feasible approach for developing all-2D optoelectronic devices with simultaneous high-sensitivity and low noise.


2005 ◽  
Vol 490-491 ◽  
pp. 1-6 ◽  
Author(s):  
Bob B. He ◽  
Ke Wei Xu ◽  
Fei Wang ◽  
Ping Huang

This paper introduces the recent progress in two-dimensional X-ray diffraction as well as its applications in microstructure and residual stress analysis. Based on the matrix transformation between diffraction space, detector space and sample space, the unit vector of the diffraction vector can be expressed in the sample space corresponding to all the geometric parameters and Bragg conditions. The same transformation matrix can be used for texture and stress analysis. The fundamental equations for both stress measurement and texture measurement are developed with the matrix transformation defined for the two-dimensional diffraction. Stress measurement using twodimensional detector is based on a direct relationship between the stress tensor and the diffraction cone distortion. The two-dimensional detector collects texture data and background values simultaneously for multiple poles and multiple directions.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1131-C1131
Author(s):  
Alejandro Rodriguez-Navarro ◽  
Krzysztof Kudłacz

Polycrystalline materials properties and behaviour are ultimately determined by their crystallinity, phase composition and microstructure (i.e., crystal size, preferential orientation). Two-dimensional (2D) diffraction patterns collected with an area detector (i.e., CDD), available in modern X-ray diffractometers, contain detailed information about all these important material characteristics. Furthermore, recent advances in detector technologies permits the collection of high resolution diffraction patterns in which the microstructure of the material can be directly imaged. If the size of beam relative to the crystal size in the sample is adequately choosen, the diffraction pattern produced will have spotty rings in which the spots are the diffracted images of individual grains. The resolution of the image is mainly dependent on the characteristics of the X-ray beam (i.e., diameter, angular divergence), which can be modulated by X-ray optics, sample to detector distance, the pixel size of the detector and the sharpness of the point spread function. From these patterns, the crystal size distribution of different crystalline phases present in the sample can be independently determined using specialized software capable of extracting and combining the information contained in these patterns. This technique is applicable to materials with crystal sizes ranging from submicron to mm sizes and is complementary to techniques based on peak profile analyses (i.e., Scherrer method) which are applicable only to nanocrystalline materials. Finally, given the high sensitivity of current detectors, crystal size evolution can be followed in real-time to study important transformation processes such as crystallization, annealing, etc. The use of 2D X-ray diffraction as applied to microstructure characterization will be illustrated through several examples.


2000 ◽  
Vol 618 ◽  
Author(s):  
X. J. Guo ◽  
C.-Y. Wen ◽  
J. H. Huang ◽  
H. C. Shih

ABSTRACTWe proposed a concise and novel scheme to determine the crystallographic misorientation of heteroepitaxial structures. In addition to subtle high-resolution transmission electron microscope images, the information revealed from selected-area diffraction patterns at the interfaces offers another path to determine the angles of misorientations. The principle is to extract the basically three-dimensional misorientation information from a two-dimensional selected-area diffraction pattern through the employment of the Laue circle


2003 ◽  
Vol 18 (2) ◽  
pp. 71-85 ◽  
Author(s):  
Bob Baoping He

Two-dimensional X-ray diffraction refers to X-ray diffraction applications with two-dimensional detector and corresponding data reduction and analysis. The two-dimensional diffraction pattern contains far more information than a one-dimensional profile collected with the conventional diffractometer. In order to take advantage of two-dimensional diffraction, new theories and approaches are necessary to configure the two-dimensional X-ray diffraction system and to analyze the two-dimensional diffraction data. This paper is an introduction to some fundamentals about two-dimensional X-ray diffraction, such as geometry convention, diffraction data interpretation, and advantages of two-dimensional X-ray diffraction in various applications, including phase identification, stress, and texture measurement.


2004 ◽  
Vol 12 (6) ◽  
pp. 36-37 ◽  
Author(s):  
Shaul Barkan ◽  
Valeri D. Saveliev ◽  
Jan S. Iwanczyk ◽  
Liangyuan Feng ◽  
Carolyn R. Tull ◽  
...  

A silicon multi-cathode detector (SMCD) has been developed for microanalysis and x-ray mapping applications. The SMCD has a large active area (∼0.5 cm2), excellent energy resolution, and high count rate capability. The detector utilizes novel structures that have produced very low dark current, high electric field, uniform charge collection, low noise and high sensitivity to low energy x-rays. The detector's spectral response was evaluated using a 55Fe radioisotope source, as well as by fluorescing materials with an x-ray generator. Figure 1 shows a 55Fe spectrum with an energy resolution of 125 eV FWHM at 5.9 keV collected at 12 μs peaking time. This energy resolution has been repeatably measured on many different detectors. To evaluate the high count rate x-ray performance, which is very important for fast x-ray mapping, a Cu sample was fluoresced using a Rh-anode x-ray tube.


Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Author(s):  
R. Stevenson

A study has been made of the morphology and crystallography of particulate emissions from indirect injection diesel engines. This particulate matter consists substantially of carbon (although hydrocarbons can be extracted with solvents). Samples were collected in a diluted exhaust stream on amorphous carbon films and examined in a JEM-200C electron microscope operated in the TEM mode with an accelerating voltage of 200 KV.The morphology of the diesel particles, as shown in Fig. 1, markedly resembles carbon blacks and consists of an agglomeration of quasispherical subunits arranged in chains or clusters. Only limited changes in morphology were observed as the number of subunits in the particle increased (although larger particles tended to be more cluster-like than the extended chain shown in Fig. 1). However, a dramatic effect of the number of subunits was observed on the character of the diffraction pattern. Smaller particles yielded a diffraction pattern consisting of very diffuse rings typical of turbostratic carbon; the diffraction patterns from the larger particles, however, although qualitatively similar, exhibited much sharper and less diffuse ring patterns.


Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


Sign in / Sign up

Export Citation Format

Share Document