scholarly journals The Nail Penetration Behaviour of Carbon Nanotube Composite Electrodes for Energy Storage

2021 ◽  
Vol 8 ◽  
Author(s):  
Evangelos Koliolios ◽  
Daniel G. Mills ◽  
James J. C. Busfield ◽  
Wei Tan

The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.

2019 ◽  
Vol 9 ◽  
pp. 184798041882447 ◽  
Author(s):  
Johnson Michael ◽  
Zhang Qifeng ◽  
Wang Danling

MXenes have been under a lot of scientific investigation due to the novel characteristics that are inherent to two-dimensional nanostructures. There are a multitude of MXenes being studied and one of the most popular among these would be the titanium carbides. The general formula for titanium carbide is Ti n+ 1C n for the nanosheets produced that have undergone much study in the past few years. These studies include how the etching process affects the final MXene sheet and how the post-processing via heat or combining with polymers and/or inorganic compounds influences the mechanical and electrical properties. It is found that different etching techniques can be used to change the electrical properties of the produced MXenes and different post-processing techniques can be used to further change the properties of the nanosheets. The possible application of the titanium carbide MXenes as chemical sensing and energy storage materials will be briefly discussed. MXene nanosheets show promise in such devices due to their high surface area to volume ratio and their specific surface structure with feasible surface functionalization.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.


2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar

2010 ◽  
Vol 25 (8) ◽  
pp. 1500-1506 ◽  
Author(s):  
Akshay S. Raut ◽  
Charles B. Parker ◽  
Jeffrey T. Glass

Electrochemical double layer capacitors, also referred to as supercapacitors, are a promising technology in the field of energy storage. Carbon nanotube (CNT)-based supercapacitors are particularly interesting because of CNTs' high surface area and conductivity. CNT supercapacitors can potentially be used in hybrid electric vehicles due to their higher power density. Comparing energy storage systems that store energy in different ways, such as batteries, fuel cells, supercapacitors, and flywheels, requires that an appropriate set of performance data be collected. A Ragone plot is a log-log plot of a device's energy density versus power density, giving insight into its operational range. A method to obtain Ragone plots for CNT-based supercapacitors in a three-terminal electrochemical cell was adapted from a technique to test commercial capacitors for electric vehicles. Ragone plots for different types of as-grown CNT electrodes in different electrolytes are presented, along with the procedural details of this new method to obtain electrode-specific energy and power densities. Additionally, a theoretical weight calculation for a carbon nanotube film was derived and validated with a direct weight measurement of a CNT film. This weight was used in the specific energy and power densities for the Ragone plot.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Aaron S. George ◽  
Maziar Ghazinejad ◽  
Wei Wang ◽  
Isaac Ruiz ◽  
Mihrimah Ozkan ◽  
...  

AbstractSustainable energy is currently limited by the ability of materials to store energy and deliver it on demand. Allotropes of carbon are attractive for their potential for use in energy storage due to low weight, high chemical stability and low production cost. Carbon nanotubes and graphene can be combined to provide an effective three-dimensional material with high conductivity and high surface area. We demonstrate the use of block copolymers to obtain patterned arrays of iron nanoparticles which give rise to ordered carbon nanotubes with good size distribution. A one-step chemical vapor deposition process for large-area fabrication of the graphene and carbon nanotube hybrid structure is described. Following chemical vapor deposition the hybrid material is demonstrated in a supercapacitor device. The fabricated supercapacitor exhibits high electrical conductivity, and has potential for extremely high energy storage capability.


Science ◽  
2019 ◽  
Vol 366 (6468) ◽  
pp. eaan8285 ◽  
Author(s):  
Ekaterina Pomerantseva ◽  
Francesco Bonaccorso ◽  
Xinliang Feng ◽  
Yi Cui ◽  
Yury Gogotsi

Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.


2021 ◽  
Vol 1 (3) ◽  
pp. 208-218
Author(s):  
Arsal Mehmood

Graphene, a magical development of 2004, has revolutionized today's energy storage technologies. It is nothing but a graphite two-dimensional (2D) allotropic pure carbon layer which is derived from a three-dimensional (3D) shape. Since batteries have been the most common storage device from the invention of the first electrical battery by an Italian physicist Alessandro Volta in 1799 A.D but batteries offer many drawbacks, such as length, weight, poor transient response, low power density, and high internal resistance. In this contrast, the impressive and unique properties of graphene supercapacitor such as high peak current, high surface area, high electrical conductivity, low internal resistance, high load current, long life cycle, high power density, low-temperature charging, and discharging make graphene supercapacitor a replacement of traditional energy storage devices and sets trend for the future. This analytical comparative analysis presents an overview between four traditional batteries and graphene-based supercapacitor. For this regard, dynamic models, modeling equations, and an integrated simulation model for batteries and graphene-supercapacitors under MATLAB/Simulink® 2020a environment is developed. In addition, the effect of temperature on battery output and graphene-supercapacitor is also addressed.


2021 ◽  
Vol 22 (9) ◽  
pp. 4498
Author(s):  
Md. Motiar Rahman ◽  
Mst Gulshan Ara ◽  
Mohammad Abdul Alim ◽  
Md. Sahab Uddin ◽  
Agnieszka Najda ◽  
...  

Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.


2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


Sign in / Sign up

Export Citation Format

Share Document