scholarly journals Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices

2019 ◽  
Vol 9 ◽  
pp. 184798041882447 ◽  
Author(s):  
Johnson Michael ◽  
Zhang Qifeng ◽  
Wang Danling

MXenes have been under a lot of scientific investigation due to the novel characteristics that are inherent to two-dimensional nanostructures. There are a multitude of MXenes being studied and one of the most popular among these would be the titanium carbides. The general formula for titanium carbide is Ti n+ 1C n for the nanosheets produced that have undergone much study in the past few years. These studies include how the etching process affects the final MXene sheet and how the post-processing via heat or combining with polymers and/or inorganic compounds influences the mechanical and electrical properties. It is found that different etching techniques can be used to change the electrical properties of the produced MXenes and different post-processing techniques can be used to further change the properties of the nanosheets. The possible application of the titanium carbide MXenes as chemical sensing and energy storage materials will be briefly discussed. MXene nanosheets show promise in such devices due to their high surface area to volume ratio and their specific surface structure with feasible surface functionalization.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Helge Skarphagen ◽  
David Banks ◽  
Bjørn S. Frengstad ◽  
Harald Gether

Borehole thermal energy storage (BTES) exploits the high volumetric heat capacity of rock-forming minerals and pore water to store large quantities of heat (or cold) on a seasonal basis in the geological environment. The BTES is a volume of rock or sediment accessed via an array of borehole heat exchangers (BHE). Even well-designed BTES arrays will lose a significant quantity of heat to the adjacent and subjacent rocks/sediments and to the surface; both theoretical calculations and empirical observations suggest that seasonal thermal recovery factors in excess of 50% are difficult to obtain. Storage efficiency may be dramatically reduced in cases where (i) natural groundwater advection through the BTES removes stored heat, (ii) extensive free convection cells (thermosiphons) are allowed to form, and (iii) poor BTES design results in a high surface area/volume ratio of the array shape, allowing high conductive heat losses. The most efficient array shape will typically be a cylinder with similar dimensions of diameter and depth, preferably with an insulated top surface. Despite the potential for moderate thermal recovery, the sheer volume of thermal storage that the natural geological environment offers can still make BTES a very attractive strategy for seasonal thermal energy storage within a “smart” district heat network, especially when coupled with more efficient surficial engineered dynamic thermal energy stores (DTES).


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.


2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar

Science ◽  
2019 ◽  
Vol 366 (6468) ◽  
pp. eaan8285 ◽  
Author(s):  
Ekaterina Pomerantseva ◽  
Francesco Bonaccorso ◽  
Xinliang Feng ◽  
Yi Cui ◽  
Yury Gogotsi

Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.


2021 ◽  
Vol 1 (3) ◽  
pp. 208-218
Author(s):  
Arsal Mehmood

Graphene, a magical development of 2004, has revolutionized today's energy storage technologies. It is nothing but a graphite two-dimensional (2D) allotropic pure carbon layer which is derived from a three-dimensional (3D) shape. Since batteries have been the most common storage device from the invention of the first electrical battery by an Italian physicist Alessandro Volta in 1799 A.D but batteries offer many drawbacks, such as length, weight, poor transient response, low power density, and high internal resistance. In this contrast, the impressive and unique properties of graphene supercapacitor such as high peak current, high surface area, high electrical conductivity, low internal resistance, high load current, long life cycle, high power density, low-temperature charging, and discharging make graphene supercapacitor a replacement of traditional energy storage devices and sets trend for the future. This analytical comparative analysis presents an overview between four traditional batteries and graphene-based supercapacitor. For this regard, dynamic models, modeling equations, and an integrated simulation model for batteries and graphene-supercapacitors under MATLAB/Simulink® 2020a environment is developed. In addition, the effect of temperature on battery output and graphene-supercapacitor is also addressed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Evangelos Koliolios ◽  
Daniel G. Mills ◽  
James J. C. Busfield ◽  
Wei Tan

The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.


2021 ◽  
Vol 22 (9) ◽  
pp. 4498
Author(s):  
Md. Motiar Rahman ◽  
Mst Gulshan Ara ◽  
Mohammad Abdul Alim ◽  
Md. Sahab Uddin ◽  
Agnieszka Najda ◽  
...  

Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.


Sign in / Sign up

Export Citation Format

Share Document