scholarly journals Seismic Performances of SRC Special-Shaped Columns and RC Beam Joints Under Double-Direction Low-Cyclic Reversed Loading

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiangyu Zhang ◽  
Qing Xia ◽  
Bailong Ye ◽  
Weiran Yan ◽  
Zhiheng Deng ◽  
...  

Steel-reinforced concrete (SRC) special-shaped column and beam frame structure is a special structural form that can meet the requirements of high bearing capacity and satisfy the esthetic requirement of buildings. In this study, a new joint design approach is adopted to focus on the seismic behavior of SRC special-shaped column and reinforced concrete (RC) beam joints under low-cyclic double-directional reactions through pseudo-static tests with a controlled stirrup distance. The joints of SRC specimens were compared with those of RC specimens by controlling the area of steel and reinforcement, and hysteresis cycle skeleton curves and load and strain hysteresis cycles were analyzed. The specimen with profiled steel was found to have better energy dissipation capacity. The energy dissipation capacity and stiffness degradation of the nodes were analyzed. The test results showed that the energy dissipation capacity of the SRC joints was better than that of the conventional concrete column joints, and the stiffness degradation of RC joints was more significant than that of SRC joints.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lianjie Jiang ◽  
Guoliang Bai

The cumulative damage behavior of SRC columns under far-field long-period ground motions was simulated and studied by quasi-static tests with the same displacement for 10 times. Quasi-static tests of 8 SRC columns were conducted under the horizontal cyclic loading with the same displacement for 10 times or 3 times, and then the effects of steel ratio, stirrup ratio, axial compression ratio, and number of cyclic loading on the cumulative damage of SRC columns under the far-field long-period ground motions were studied. The results showed that the number of cyclic loading had little effect on the peak load of the specimens, but had a significant effect on the deformation capacity, stiffness degradation, and energy dissipation capacity. Compared with the specimens after 3 cycles, the displacement ductility coefficient of specimens after 10 cycles was reduced by about 20%–26%, the ultimate hysteresis energy dissipation was reduced by 35%–48%, while the stiffness degradation rate was accelerated. After the peak load, the cumulative damage caused by multiple cyclic loading with the same displacement was more significant, which aggravated the reduction of bearing capacity and stiffness degradation. The smaller the steel ratio and stirrup ratio, the larger the axial compression ratio, and the greater the reduction of the bearing capacity and stiffness of specimens. However, accumulated damage caused by multiple cyclic loading with the same displacement had a slight impact on the energy dissipation capacity. Increasing the steel ratio and stirrup ratio can effectively improve the deformation capacity and energy dissipation capacity of the specimens and reduce the bearing capacity and stiffness degradation caused by cumulative damage.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 310
Author(s):  
Fei Wang ◽  
Kaozhong Zhao ◽  
Jianwei Zhang ◽  
Kai Yan

To study the influence of masonry infill walls on the hysteretic performance of reinforced concrete frames, a cyclic experiment was conducted for three two-story and two-span reinforced concrete frame structures, including one reinforced concrete frame without infill walls and two frames with infill walls. Whether the infill walls were constructed in the frames and the type of infilled material were the main parameters of the test. The major results reveal that: the infill walls clearly changed the mechanical mechanism of the frame structure at the early stage of loading, magnified the stiffness and horizontal bearing capacity of the frame structure, and enhanced the energy dissipation capacity of the frame structure, but reduced the deformation performance of the frame structure. In the later stage of loading, the infill walls would no longer work as one with the frame gradually with the failure of the infill walls, and the above performance of the structure would approach the empty frame structure. Moreover, the initial stiffness, energy dissipation capacity, and horizontal bearing capacity of the frame with infill walls of clay hollow bricks were the highest among the three specimens. But due to the strong diagonal bracing effect, the damage to the top of the columns and beam-column joints was serious, the yield displacement was reduced significantly, and the shear failure of the top of the columns and the joints occurred prematurely, which showed poor performance of deformation and ductility. However, the frame with infill walls of relatively soft aerated lightweight concrete blocks showed better performance of deformation and ductility.


2017 ◽  
Vol 27 (9) ◽  
pp. 1416-1447 ◽  
Author(s):  
Liu Jin ◽  
Shuai Zhang ◽  
Dong Li ◽  
Haibin Xu ◽  
Xiuli Du ◽  
...  

The results of an experimental program on eight short reinforced concrete columns having different structural sizes and axial compression ratios subjected to monotonic/cyclic lateral loading were reported. A 3D mesoscopic simulation method for the analysis of mechanical properties of reinforced concrete members was established, and then it was utilized as an important supplement and extension of the traditional experimental method. Lots of numerical trials, based on the restricted experimental results and the proposed 3D mesoscopic simulation method, were carried out to sufficiently evaluate the seismic performances of short reinforced concrete columns with different structural sizes and axial compression ratios. The test results indicate that (1) the failure pattern of reinforced concrete columns can be significantly affected by the shear-span ratio; (2) increasing the axial compression ratio could improve the load capacity of the reinforced concrete column, but the deformation capacity would be restricted and the failure mode would be more brittle, consequently the energy dissipation capacity could be deteriorated; and (3) the load capacity, the displacement ductility, and the energy dissipation capacity of the short reinforced concrete columns all exhibit clear size effect, namely, the size effect could significantly affect the seismic behavior of reinforced concrete columns.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


2013 ◽  
Vol 680 ◽  
pp. 234-238
Author(s):  
Jin Li Qiao ◽  
Wen Ling Tian ◽  
Ming Jie Zhou ◽  
Fang Lu Jiang ◽  
Kun Zhao

In order to validate the seismic performance of reinforced concrete grid-mesh frame wall , four grid frame walls in half size is made with different height-width ratios and different grid forms in the paper. Two of them are filling with cast-in-place plaster as filling material. According to the experimental results of these four walls subjected to horizontal reciprocating loads, we know that the grid-mesh frame wall's breaking form are in stages and multiple modes, and the main influencing factors are height-width ratio and grid form, what's more, with cast-in-place plaster as fill material, could not only improve the level of the wall bearing capacity and stiffness, but also improve the ductility and seismic energy dissipation capacity.


2013 ◽  
Vol 479-480 ◽  
pp. 1170-1174
Author(s):  
Hee Cheul Kim ◽  
Dae Jin Kim ◽  
Min Sook Kim ◽  
Young Hak Lee

The purpose of this study was to evaluate seismic performance of rehabilitated beam-column joint using FRP sheets and Buckling Restrained Braces (BRBs) and provide test data related to rehabilitated beam-column joints in reinforced concrete structures. The seismic performance of total six beam-column specimens is evaluated under cyclic loadings in terms of shear strength, effective stiffness, energy dissipation and ductility. The test results showed wrapping FRP sheets can contribute to increase the effect of confinement and the crack delay. Also retrofitting buckling restrained braces (BRBs) can improve the stiffness and energy dissipation capacity. Both FRP sheets and BRBs can effectively improve the strength, stiffness and ductility of seismically deficient beam-column joints.


2016 ◽  
Vol 16 (01) ◽  
pp. 1640015 ◽  
Author(s):  
Yun Tian Wu ◽  
Yu Shan Fu ◽  
Chong-Ming Dai

A new type of partially steel tubed concrete (PSTC) column is proposed that is suitable to be used in new high rise reinforced concrete (RC) buildings. Three exterior joint specimens consisting of RC beams and PSTC columns and two exterior RC joint specimens were designed and tested under high axial load and cyclic loading to investigate the joint behavior in terms of failure pattern, hysteresis response, deformation, energy dissipation capacity and degradation of strength and stiffness. Test results indicate that the PSTC column can benefit the performance of the joint in terms of strength, ductility and energy dissipation capacity and can partly compensate for the unfavorable effect induced by slab. The strong column–weak beam mechanism can also be ensured in RC beam to PSTC column joint.


2012 ◽  
Vol 594-597 ◽  
pp. 1680-1683
Author(s):  
Hai Tao Wan ◽  
Yu Qing Yuan

Reinforced concrete ( RC) frame structure is one type of building structure which is widely used in China. Damage of some reinforced concrete frame structures under the earthquake is caused by the damage of RC beams, So RC beams are an essential seismic members. The paper introduces the design of RC beam specimen, mechanical properties of materials, production of RC beam specimen, test method, loading device, loading system, the contents of measurement and data acquisition in detail. From the above analysis, it is obvious that the test is the most effective means of studying the seismic performance of beam.


Sign in / Sign up

Export Citation Format

Share Document