scholarly journals Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress

2020 ◽  
Vol 10 ◽  
Author(s):  
Claudia Breitkreuz ◽  
François Buscot ◽  
Mika Tarkka ◽  
Thomas Reitz
2009 ◽  
pp. 183-190
Author(s):  
Marina Putnik-Delic

Ten wheat genotypes were tested for resistance characteristics to Puccinia triticina. Infection intensity in the field was evaluated at different growth stages, and time of spike appearance and leaf senescence were recorded. At seedling stage, under the controlled conditions of greenhouse, latency period, infection frequency and reaction type were determined. Resistance characteristics at different wheat growth stages were strongly correlated. Correlation coefficient between LP x RT x IF and AUDPC values, was 0.828. The highest coefficients of correlation between particular resistance characteristics and maximal intensity in the field were determined with the last evaluation in the field (0.665, 0.476 and 0.834). Time of spike appearance was very variable for different genotypes, whereas leaf senescence was recorded concomitantly for near all genotypes. The exception was Rusalka, as the most resistant in the field. All genotypes included in this three-year long experiment expressed stability with respect to infection intensity at different growth stages. Genotype Timson showed the highest level of resistance according to all tested characteristics, while genotype Pkb krupna showed the lowest.


Weed Science ◽  
1971 ◽  
Vol 19 (3) ◽  
pp. 301-305 ◽  
Author(s):  
W. E. Arnold ◽  
John D. Nalewaja

The effect of 3,6-dichloro-o-anisic acid (dicamba) was studied on wild buckwheat (Polygonum convolvulusL.) and wheat (Triticum aestivumL.) at two growth stages. Wild buckwheat, treated when 5 to 8 cm tall, was very susceptible to dicamba which caused rapid dehydration of the leaves and growth of callus tissue at stem internodes. Wild buckwheat, treated when flowering, increased in growth 2 days after treatment and then decreased after 4 days. Wheat growth tended to increase in all plant parts after treatment with dicamba at both the 2 to 3-leaf and the boot stages. Dicamba increased the RNA and protein content in wild buckwheat at both growth stages and in wheat at the boot stage. Dicamba affected the transition temperature and precipitation of reconstituted nucleohistone but not the uncombined nucleic acid or histonein vitro, indicating that a DNA-histone-dicamba complex had occurred. The binding of dicamba to protein varied with different proteins and reduced the UV absorbance of the bound proteins.


2018 ◽  
Vol 17 (8) ◽  
pp. 1871-1880 ◽  
Author(s):  
Tanushree Bera ◽  
Sandeep Sharma ◽  
H.S. Thind ◽  
Yadvinder-Singh ◽  
H.S. Sidhu ◽  
...  

2019 ◽  
Vol 131 ◽  
pp. 01098
Author(s):  
Zhang Hong-wei ◽  
Huai-liang Chen ◽  
Fei-na Zha

In the middle and late growing period of winter wheat, soil moisture is easily affected by saturation when using MODIS data to retrieve soil moisture. In this paper, in order to reduce the effect of the saturation caused by increasing vegetation coverage in middle and late stage of winter wheat, the Difference Vegetation Index (DVI) model was modified with different coefficients in different growth stages of winter wheat based on MODIS spectral data and LAI characteristics of variation. LAI was divided into three stages, LAI ≤ 1 < LAI ≤, 3 < LAI, and the adjusting coefficient of α=1, α=3, α=5, were taken to modifying the Difference Vegetation Index(DVI). The results show that the Modified Difference Vegetation Index (MDVIα) can effectively reduce the interference of saturation, and the inversion result of soil moisture in the middle and late period of winter wheat growth is obviously superior to the uncorrected inversion model of DVI.


2019 ◽  
Vol 9 (10) ◽  
pp. 3369-3380 ◽  
Author(s):  
Mehdi Momen ◽  
Malachy T. Campbell ◽  
Harkamal Walia ◽  
Gota Morota

Recent advancements in phenomics coupled with increased output from sequencing technologies can create the platform needed to rapidly increase abiotic stress tolerance of crops, which increasingly face productivity challenges due to climate change. In particular, high-throughput phenotyping (HTP) enables researchers to generate large-scale data with temporal resolution. Recently, a random regression model (RRM) was used to model a longitudinal rice projected shoot area (PSA) dataset in an optimal growth environment. However, the utility of RRM is still unknown for phenotypic trajectories obtained from stress environments. Here, we sought to apply RRM to forecast the rice PSA in control and water-limited conditions under various longitudinal cross-validation scenarios. To this end, genomic Legendre polynomials and B-spline basis functions were used to capture PSA trajectories. Prediction accuracy declined slightly for the water-limited plants compared to control plants. Overall, RRM delivered reasonable prediction performance and yielded better prediction than the baseline multi-trait model. The difference between the results obtained using Legendre polynomials and that using B-splines was small; however, the former yielded a higher prediction accuracy. Prediction accuracy for forecasting the last five time points was highest when the entire trajectory from earlier growth stages was used to train the basis functions. Our results suggested that it was possible to decrease phenotyping frequency by only phenotyping every other day in order to reduce costs while minimizing the loss of prediction accuracy. This is the first study showing that RRM could be used to model changes in growth over time under abiotic stress conditions.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169016 ◽  
Author(s):  
Lijie Yang ◽  
Lili Zhang ◽  
Chunxiao Yu ◽  
Dongpo Li ◽  
Ping Gong ◽  
...  

2019 ◽  
Vol 7 ◽  
pp. 60-68
Author(s):  
S.H. Mohammed ◽  
Maarouf I. Mohammed

Maize (Zeamays L.) forage quality traits are reported to show varying responses to abiotic stress. Four trials were conducted in Sudan (Africa) during the summer and winter seasons (2013 – 2014) at two locations: Shambat (normal soils) and Soba (salt affected soils) to investigate the effects of abiotic stress on the nutritive value of maize forage. In each trial nine maize genotypes were studied under two watering regimes arranged in split plot experiment in randomized complete block design. The compound effect of salt, water and heat stresses created by the combination of locations, seasons and watering regimes were used to investigate the effect of abiotic stress on forage quality at silk initiation and dough growth stages. Character associations under stressed and none stressed conditions were studied. NDF, ADF, CP, forage yield and related traits were measured. Abiotic stress significantly lowered the nutritive value in terms of crude protein, digestibility and intake potential. Digestibility under stressed condition was slightly improved as growth stage advanced from silk initiation to dough stage. Correlations under non stress conditions between forage yield and quality traits were either favorable with NDF and weak or insignificant with ADF and CP. Under stress conditions, similar trend generally exists apart from the unfavorable correlation of CP with each of yield and ADF, in addition to earliness with NDF. The compound effect of salt, water and heat stresses have adverse impact on the nutritive value of maize forage. Varieties combining high performance in quality and forage yield could be developed under non-stressed or stressed conditions.


2015 ◽  
Vol 28 (1) ◽  
pp. 5-28
Author(s):  
Witold Drezner

The morphogenesis of vegetative shoots of tillering plants of the winter wheat, the mode of identification and the description of the sequence of formation of individual shoots are presented. The average elongation growth of plants (e) in the successive growth stages are described as the sum of the increase of the main shoot (a) and of the side (secondary) shoots (Σ b) divided by the number of measured tillers (1) and by the time unit (t) according to the equation. By this method the correlation between the dynamics of winter wheat growth and the grade of tillering are described for three varieties.


2016 ◽  
Vol 8 (3) ◽  
pp. 1398-1403 ◽  
Author(s):  
Rajiv Rakshit ◽  
A.K. Patra ◽  
T.J. Purakayastha ◽  
R.D. Singh ◽  
Shiva Dhar ◽  
...  

A field experiment was conducted during 2010-2011 and 2011-2012 to investigate the effect of optimal (100% NPK) to super-optimal doses (200% NPK) of mineral fertilizers on soil enzymes such as dehydrogenase (DHA), acid phosphatase (Ac-PA), alkaline phosphatase (Alk-PA), fluorescien diacetate hydrolysis (FDA), urease and nitrate reductase (NRA) at three physiological stages (CRI, anthesis and maturity) of wheat crop on an Inceptisol. Dehydrogenase activity was reduced by 28-37% when fertilizer application was at super-optimal dose (200% NPK), whereas, urease and NRA responded positively in the range of 43-44% and 213-231% respectively. Alk-PAwas 7.3-7.9% higher in treatments receiving 125% NPK as compared to control (100% NPK); whereas, Ac-PA declines in the plots receiving 175 and 200% of recommended dose of fertilizer (RDF) as compared to 150% NPK levels. Addition of 175% RDF increased the FDA to the tune of 46-53% as compared to 100% NPK. A significant (P≤0.05) positive interaction between fertilizer treatments and physiological stages of wheat growth was observed on soil enzyme activities (except urease and NRA) being highest at the anthesis stage of wheat. Correlation matrix analysis showed that DHA was correlated with the studied enzyme activities except Ac-PA and FDA; whereas, strong correlation was observed between urease and NRA (r=0.981, P=0.01). This study provides theoretical and practical base for avoiding super optimal application of fertilisers which hinders the enzyme activities and vis-a-vis sustainable nutrient enrichment under rhizosphere.


2018 ◽  
Vol 31 (1) ◽  
pp. 80-89 ◽  
Author(s):  
EDILENE DANIEL DE ARAÚJO ◽  
ALBERTO SOARES DE MELO ◽  
MARIA DO SOCORRO ROCHA ◽  
REBECA FERREIRA CARNEIRO ◽  
MAURISRAEL DE MOURA ROCHA

ABSTRACT Cowpea is one of the major food crops in Northeast Brazil, where it is commonly cultivated in the semi-arid regions with limited water availability. It is important to study the elicitors associated with cowpea to mitigate any deleterious effects of abiotic stress on the initial establishment of this crop. In this study, we aimed to evaluate the morphophysiological changes in cowpea cultivars under osmotic stress with seeds soaked in salicylic acid. The germination test was conducted in B.O.D germination chambers. The seeds of three cowpea cultivars: BRS Tumucumaque, BRS Aracê, and BRS Guariba, were germinated at five osmotic potentials (0.0; -0.2; -0.4; -0.6, and -0.8 MPa) after three pre-treatments: pre-soaking in deionized water, pre-soaking in salicylic acid, and without pre-soaking. The following parameters were evaluated: germination, germination speed index, seedling height, total phytomass, contents of chlorophyll ‘a’ and ‘b’, carotenoid content, electrolyte leakage, water content, and proline content. Our results indicate that salicylic acid promotes reduction in the harmful effects of abiotic stress, which is reflected in the increase in germination percentage, seedling height, and chlorophyll and carotenoid content as well as in the adjustment of electrolyte leakage and increase in proline content under induced water stress conditions. The cultivar BRS Guariba proved to be more tolerant to water deficit during germination and initial growth stages, when the seeds were treated with salicylic acid (1 mM).


Sign in / Sign up

Export Citation Format

Share Document