Antibiotics-Peptide Conjugates Against Multidrug-resistant Bacterial Pathogens

2019 ◽  
Vol 18 (22) ◽  
pp. 1926-1936 ◽  
Author(s):  
Akinwale Ajayi David ◽  
Shang Eun Park ◽  
Keykavous Parang ◽  
Rakesh Kumar Tiwari

The menace of multi-drug resistance by bacterial pathogens that are responsible for infectious diseases in humans and animals cannot be over-emphasized. Many bacteria develop resistance to antibiotics by one or more combination of resistance mechanisms namely, efflux pump activation thereby reducing bacteria intracellular antibiotic concentration, synthesizing a protein that protects target site causing poor antibiotic affinity to the binding site, or mutations in DNA and topoisomerase gene coding that alters residues in the binding sites. The ability to use a combination of these resistance mechanisms among others creates a phenomenon known as antimicrobial drug resistance. The development of a new class of antibiotics to address bacterial resistance will require many resources, such as time-consuming effort and high cost associated with commercial risk. Hence, the researchers have adopted a strategic approach to enhance the antibacterial efficacy of existing antibiotics by conjugation or combination of existing antibiotics. A number of peptides have become known as antibacterial, cell-penetrating, or membrane-active agents. Antibiotics-Peptide Conjugates (APCs) are a combination of known antibiotics with a peptide connected through a linker. The rationale is to produce an alternative multifunctional antimicrobial compound that will elicit synergistic antibacterial activities while reducing known shortcomings of antibiotics or peptides, such as cellular penetration, serum instability, cytotoxicity, hemolysis, and instability in high salt conditions. In this review, we overview APCs which are used, as a strategy to combat the menace of multi-drug resistance of bacterial pathogens. Furthermore, we explain the focus area of adopted APC strategies and physicochemical properties data that show how they can be used to improve antibacterial efficacy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Lida Chen ◽  
Pinghai Tan ◽  
Jianming Zeng ◽  
Xuegao Yu ◽  
Yimei Cai ◽  
...  

BackgroundThis study aimed to examine the impact of an intervention carried out in 2011 to combat multi-drug resistance and outbreaks of imipenem-resistant Acinetobacter baumannii (IRAB), and to explore its resistance mechanism.MethodsA total of 2572 isolates of A. baumannii, including 1673 IRAB isolates, were collected between 2007 and 2014. An intervention was implemented to control A. baumannii resistance and outbreaks. Antimicrobial susceptibility was tested by calculating minimal inhibitory concentrations (MICs), and outbreaks were typed using pulsed-field gel electrophoresis (PFGE). Resistance mechanisms were explored by polymerase chain reaction (PCR) and whole genome sequencing (WGS).ResultsFollowing the intervention in 2011, the resistance rates of A. baumannii to almost all tested antibiotics decreased, from 85.3 to 72.6% for imipenem, 100 to 80.8% for ceftriaxone, and 45.0 to 6.9% for tigecycline. The intervention resulted in a decrease in the number (seven to five), duration (8–3 months), and departments (five to three) affected by outbreaks; no outbreaks occurred in 2011. After the intervention, only blaAMPC (76.47 to 100%) and blaTEM–1 (75.74 to 96.92%) increased (P < 0.0001); whereas blaGES–1 (32.35 to 3.07%), blaPER–1 (21.32 to 1.54%), blaOXA–58 (60.29 to 1.54%), carO (37.50 to 7.69%), and adeB (9.56 to 3.08%) decreased (P < 0.0001). Interestingly, the frequency of class B β-lactamase genes decreased from 91.18% (blaSPM–1) and 61.03% (blaIMP–1) to 0%, while that of class D blaOXA–23 increased to 96.92% (P < 0.0001). WGS showed that the major PFGE types causing outbreaks each year (type 01, 11, 18, 23, 26, and 31) carried the same resistance genes (blaKPC–1, blaADC–25, blaOXA–66, and adeABC), AdeR-S mutations (G186V and A136V), and a partially blocked porin channel CarO. Meanwhile, plasmids harboring blaOXA–23 were found after the intervention.ConclusionThe intervention was highly effective in reducing multi-drug resistance of A. baumannii and IRAB outbreaks in the long term. The resistance mechanisms of IRAB may involve genes encoding β-lactamases, efflux pump overexpression, outer membrane porin blockade, and plasmids; in particular, clonal spread of blaOXA–23 was the major cause of outbreaks. Similar interventions may also help reduce bacterial resistance rates and outbreaks in other hospitals.


2017 ◽  
Vol 15 (2) ◽  
pp. 140
Author(s):  
Yatnita Parama Cita ◽  
Dwi Hilda Putri

Tuberculosis (TB) is a serious disesase in the world. According to the WHO, it is estimated more than 3 million people die every year as a result of this infectious disease. One factor that causes diffi culty handling TB chemoteraphy is not effective against the bacteria Mycobacterium tuberculosis that causes TB . Effectiveness of treatment is often hampered by the emergence of bacterial resistance against M. Tuberculosis chemotherapy agents are given. From some research found that bacterial resistance may occur in more one type of chemotherapy agent also known as multi-drug resistance (MDR). Mycobacterium tuberculosis develop resistance mechanisms that are different from other bacteria in general. In prokaryotes, resistance is generally due to the transfer of genetic, either through plasmids,transposons and other. Reference sequence beta sub unit of RNAP protein M. Tuberculosis with accession number NP_215181.1 and M. tucerculosis rpoB gene with accession number NC_000962.3 used to obtain preliminary information from the data base www.ncbi.nlm.gov and www.uniprot.org . Mutation done according to several studies literature. Analysis of the composition, profi le, location and structure of protein using www.expasy.org, TMHMM and http://bioinf.cs.ucl.ac.uk/psipred. The primer design is done with Primer Design Program. Based on the analysis of mutation in the beta subunit of RNAP protein M. Tuberculosis, codon 531 (Ser ->Leu), it is known that mutations cause changes in some properties and structure of proteins. Possible changes affecting the nature of bacterial resistance to antibiotics rifampicin. However, further analysis needs to be done with the analysis of the docking technique.


Author(s):  
Khac-Minh Thai ◽  
Trong-Nhat Do ◽  
Thuy-Viet-Phuong Nguyen ◽  
Duc-Khanh-Tho. Nguyen ◽  
Thanh-Dao Tran

Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.


Author(s):  
Olga A. Chernova ◽  
Vladislav M. Chernov ◽  
Alexey A. Mouzykantov ◽  
Natalya B. Baranova ◽  
Inna A. Edelstein ◽  
...  

2007 ◽  
Vol 79 (12) ◽  
pp. 2143-2153 ◽  
Author(s):  
John B. Bremner

Bacteria use a number of resistance mechanisms to counter the antibacterial challenge, and one of these is the expression of transmembrane protein-based efflux pumps which can pump out antibacterials from within the cells, thus lowering the antibacterial concentration to nonlethal levels. For example, in S. aureus, the NorA pump can pump out the antibacterial alkaloid berberine and ciprofloxacin. One general strategy to reduce the health threat of resistant bacteria is to block a major bacterial resistance mechanism at the same time as interfering with another bacterial pathway or target site. New developments of this approach in the context of dual-action prodrugs and dual-action (or hybrid) drugs in which one action is targeted at blocking the NorA efflux pump and the second action at an alternative bacterial target site (or sites) for the antibacterial action are discussed. The compounds are based on a combination of 2-aryl-5-nitro-1H-indole derivatives (as the NorA efflux pump blocking component) and derivatives of berberine. General design principles, syntheses, antibacterial testing, and preliminary work on modes of action studies are discussed.


2020 ◽  
Author(s):  
Chinwe U. Chukwudi ◽  
Liam Good

AbstractThe antibacterial efficacy of the tetracycline antibiotics has been greatly reduced by the development of resistance, hence a decline in their clinical use as antibiotics. The hok/sok locus is a type I toxin/antitoxin plasmid stability element, often associated with multi-drug resistance plasmids, especially ESBL-encoding plasmids. It enhances host cell survivability and pathogenicity in stressful growth conditions, and particularly increases bacterial tolerance to β-lactam antibiotics. The hok/sok locus forms dsRNA by RNA:RNA interactions of the toxin and antitoxin, and doxycycline has been reported to bind and inhibit dsRNA cleavage/processing. This study investigated the antibacterial efficacy of doxycycline in hok/sok host bacteria cells, the effect on hok/sok-induced growth changes and the potential mechanism of the observed changes. Different strains of E. coli with growth characteristics affected by the hok/sok locus were transformed with hok/sok plasmids, and assessed for doxycycline susceptibility and growth changes. The results show that the hok/sok locus increases bacterial susceptibility to doxycycline, especially in strains with more pronounced hok/sok growth effects. The increased doxycycline susceptibility occurs despite β-lactam resistance imparted by hok/sok. Doxycycline was found to induce bacterial death in a manner phenotypically characteristic of Hok toxin expression, suggesting that it inhibits the toxin/antitoxin dsRNA degradation, leading to Hok toxin expression and cell death. In this way, doxycycline could be used to counteract the multi-drug resistance plasmid maintenance/propagation and pathogenicity mechanisms associated with the hok/sok locus. This has great potentials in the global war to contain the rise in antimicrobial resistance.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Maryam Fekri Soofi Abadi ◽  
Alireza Moradabadi ◽  
Reza Vahidi ◽  
Saeedeh Shojaeepour ◽  
Sara Rostami ◽  
...  

Abstract Background Pentavalent antimonial compounds are currently used to treat leishmaniasis and resistance to these drugs is a serious problem. Multidrug resistance protein is an efflux pump of the cell membrane that expels foreign compounds. This study designed to evaluate the mutations in the multi-drug resistance 1 (MDR1) gene, in biopsy specimens of Leishmania tropica, with high resolution melting (HRM) method. In this experimental study, genomic DNA was extracted from 130 patients with skin leishmaniasis. Then, nucleotide changes were investigated throughout the gene using HRM and sequencing methods. The samples categorized in 5 groups by differences in the melting temperature (Tm). Result The nucleotide changes analysis showed that 61% of the samples of different groups that were unresponsive to drug had mutations in the MDR1 gene, which were also confirmed by the sequencing method. These mutations can be one of the factors responsible for non-responsiveness to the treatment. Conclusion According to the findings, it seems that mutation in MDR1 gene could be responsible for drug resistance to pentavalent antimonial compounds. Furthermore, HRM method can be used to diagnose drug resistance in leishmaniasis. It is also recommended that further studies be done regarding the importance of drug resistance in the leishmania affected patients.


2020 ◽  
Vol 14 (4) ◽  
pp. 2619-2626
Author(s):  
Hitendra Singh ◽  
Umesh ◽  
Vinita Rawat ◽  
Nidhi Negi ◽  
Sunil Kumar

Extended spectrum b-lactamases (ESBLs) are one of the major enzymes responsible for antimicrobial drug resistance in bacterial isolates. The objective of this study was to find out the ESBL genes (blaTEM, blaSHV and blaCTX-M) in Enterobacteriaceae. This study was conducted from November 2013 to October 2015. The identification of Enterobacteriaceae isolates & antimicrobial drug resistance was done by conventional standard microbial methods. Further genotypic detection of ESBL was done by multiplex PCR. Results: Among 942 Enterobacteriaceae isolates, 332 (35.24%) isolates was ESBL producers. We observed high prevalence of ESBL enzyme in Klebsiella pneumonia (59.09%). These isolate revealed high resistance to co-trimoxazole, fluoroquinolones and aminoglycosides. Out of 48 randomly selected isolates, ESBL genes were identified in 45 isolates which were found resistant to third generation cephalosporins. Single CTX-M gene noticed in 29 strains of Escherichia coli (E. coli), 02 strains of Klebsiella pneumoniae, and 01 strain of Proteus mirabilis. Occurrence of Combination of the genes e.g., (blaTEM+blaCTX-M), (blaSHV+blaCTX-M), (blaTEM+blaSHV+blaCTX-M) was detected in 08, 01 and 04 isolates respectively. Multiplex PCR in CTX-M carrying isolates revealed the presence of blaCTX-M group-1. The most common blaCTX-M group-1 was observed in all isolates of family Enterobacteriaceae. Antimicrobial drug resistance is a major problem of concern now a day. Studies like this will be helpful to knowing the burden of multi drug resistance as well as formulating antibiotics policy for a particular region.


2020 ◽  
Vol 21 ◽  
Author(s):  
Hafsa Qadri ◽  
Abdul Haseeb ◽  
Manzoor Mir

: The major health-care burden for the developing world are the Infectious diseases and antimicrobial agents prove to be the magical drugs to combat this. But the phenomenon of antimicrobial resistance (AMR) represents a global challenging issue, which requires to be addressed effectively. The antimicrobial treatment for the emerging multidrug-resistant bacterial (e.g. TB, Cholera) and fungal (e.g. Candidiasis) infections is very limited and there are multiple causes and reasons responsible for the evolution of such resistance. Considering the critical issues of increasing AMR, there is an urgent requirement of identification, development, validation, and progression of novel strategies and approaches that can easily be utilized for overcoming this serious issue. Immunotherapy represents a significant way to improve host defenses and combat the issue of antimicrobial drug resistance. Similarly, drug combination therapy represents another promising approach for reducing the evolution of resistance and enhancing the longevity of the antimicrobial agents. Bacteriophage therapy also acts as a novel therapeutic option to control the development of the multidrug resistance (MDR) phenomenon. Besides, CRISPR, an innovative genome editing technology offers multiple applications to safeguard host defenses to overcome different resistance challenges. The novel approaches/strategies like combination therapy, bacteriophage therapy, immunotherapy, and CRISPR/Cas discussed here presents an overview of some of the novel strategies/approaches to be adopted against the pathogenic microbes/microbial invasions along with advanced knowledge of different drug resistance mechanisms adopted by the microbial pathogens to gain resistance against different antimicrobial agents. Therefore, understanding the novel control plans/approaches and different drug resistance mechanisms will help achieve the goals of the successful development of potential antimicrobial drugs and their respective targets and eventually help curtail the problem of increasing antimicrobial drug resistance menace in various human pathogenic microbes.


Sign in / Sign up

Export Citation Format

Share Document