scholarly journals Detection of Cephalosporin and Fluoroquinolone Resistance Genes via Novel Multiplex qPCR in Fecal Salmonella Isolates From Northern Californian Dairy Cattle, 2002–2016

2021 ◽  
Vol 12 ◽  
Author(s):  
Carl Basbas ◽  
Barbara A. Byrne ◽  
Munashe Chigerwe ◽  
Edlin D. Escobar ◽  
Emir Hodzic ◽  
...  

The objectives of this study were to evaluate the prevalence of extended spectrum β-lactamase (ESBL) genes, AmpC-type β-lactamase (ACBL) genes, and plasmid mediated quinolone resistance (PMQR) genes in Salmonella isolated at a Veterinary Medical Teaching Hospital microbiology laboratory, examine trends in presence of these resistance genes, and to explore the correlation between phenotypic resistance and presence of specific genes. The presence of ESBL, ACBL, and PMQR genes were detected using a single, novel multiplex qPCR. Only the genes blaCMY–2 and blaTEM were detected in the 110 Salmonella isolates tested. PMQR genes were not detected in isolates screened. Of 94 third-generation cephalosporin resistant isolates, representing eight serotypes, 48% (n = 45) were positive for blaCMY–2 only and 50% (n = 47) were simultaneously positive for blaCMY–2 and blaTEM. Two third-generation cephalosporin resistant isolates were tested negative for all β-lactamase genes in our qPCR assay and likely house ESBL genes not screened for by our qPCR assay. A logistic regression model revealed that for serotype Dublin isolates (n = 38) the odds ratio for testing positive for blaTEM when compared to all other serotypes was 51.6 (95% CI: 4.01–664.03, p = 0.0029). For serotype Typhimurium (n = 9) the odds ratio for testing positive for blaTEM when compared to all other serotypes was 43.3 (95% CI: 1.76–1000, p = 0.0216). Overall, our results suggest that the prevalence of resistance to cephalosporins and fluoroquinolones due to ESBLs, ACBLs, and PMQR genes present in bovine nontyphoidal Salmonella enterica isolates has remained relatively constant in the isolates screened over a 14-year period.

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1437
Author(s):  
Justice Opare Odoi ◽  
Sayo Takayanagi ◽  
Montira Yossapol ◽  
Michiyo Sugiyama ◽  
Tetsuo Asai

Consumption of retail meat contaminated with antimicrobial-resistant (AMR) bacteria is a common route for transmitting clinically relevant resistant bacteria to humans. Here, we investigated the genotypic and phenotypic resistance profiles of intrinsic colistin-resistant (ICR) Enterobacterales isolated from retail meats. ICR Enterobacterales were isolated from 103 samples of chicken, 103 samples of pork, and 104 samples of beef purchased from retail shops in Japan, using colistin-containing media, and their antimicrobial susceptibility was examined. Serratia spp. (440 isolates) showed resistance to cefotaxime (19 isolates, 4.3%), tetracycline (15 isolates, 3.4%), and other antimicrobials (<1%). Hafnia spp. (136) showed resistance to cefotaxime (12 isolates, 8.6%), ceftazidime (four isolates, 2.9%), and tetracycline (two isolates, 1.4%). Proteus spp. (39) showed resistance to chloramphenicol (four isolates, 10.3%), sulfamethoxazole-trimethoprim (four isolates, 10.3%), cefotaxime (two isolates, 5.1%), kanamycin (two isolates, 5.1%), and gentamicin (one isolate, 2.6%). Cedecea spp. (22) were resistant to tetracycline (two isolates, 9.1%) whereas Morganella spp. (11) were resistant to tetracycline (four isolates, 36.4%) and chloramphenicol (one isolate, 9.2%). The resistance genes blafonA, blaACC, and blaDHA were detected in cefotaxime-resistant Serratia spp., Hafnia spp., and Morganella spp. isolates, respectively. This emergence of antimicrobial resistance in ICR Enterobacterales may pose a public health risk.


2020 ◽  
Vol 75 (6) ◽  
pp. 1415-1423 ◽  
Author(s):  
Minh-Duy Phan ◽  
Amy L Bottomley ◽  
Kate M Peters ◽  
Elizabeth J Harry ◽  
Mark A Schembri

Abstract Background Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. Methods We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. Results We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. Conclusions This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.


2019 ◽  
Vol 75 (3) ◽  
pp. 492-507 ◽  
Author(s):  
Rebecca Lester ◽  
Patrick Musicha ◽  
Nadja van Ginneken ◽  
Angela Dramowski ◽  
Davidson H Hamer ◽  
...  

Abstract Background The prevalence of bacterial bloodstream infections (BSIs) in sub-Saharan Africa (sSA) is high and antimicrobial resistance is likely to increase mortality from these infections. Third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae are of particular concern, given the widespread reliance on ceftriaxone for management of sepsis in Africa. Objectives Reviewing studies from sSA, we aimed to describe the prevalence of 3GC resistance in Escherichia coli, Klebsiella and Salmonella BSIs and the in-hospital mortality from 3GC-R BSIs. Methods We systematically reviewed studies reporting 3GC susceptibility testing of E. coli, Klebsiella and Salmonella BSI. We searched PubMed and Scopus from January 1990 to September 2019 for primary data reporting 3GC susceptibility testing of Enterobacteriaceae associated with BSI in sSA and studies reporting mortality from 3GC-R BSI. 3GC-R was defined as phenotypic resistance to ceftriaxone, cefotaxime or ceftazidime. Outcomes were reported as median prevalence of 3GC resistance for each pathogen. Results We identified 40 articles, including 7 reporting mortality. Median prevalence of 3GC resistance in E. coli was 18.4% (IQR 10.5 to 35.2) from 20 studies and in Klebsiella spp. was 54.4% (IQR 24.3 to 81.2) from 28 studies. Amongst non-typhoidal salmonellae, 3GC resistance was 1.9% (IQR 0 to 6.1) from 12 studies. A pooled mortality estimate was prohibited by heterogeneity. Conclusions Levels of 3GC resistance amongst bloodstream Enterobacteriaceae in sSA are high, yet the mortality burden is unknown. The lack of clinical outcome data from drug-resistant infections in Africa represents a major knowledge gap and future work must link laboratory surveillance to clinical data.


2021 ◽  
Author(s):  
Silvia Argimon ◽  
Geetha Nagaraj ◽  
Varun Shamanna ◽  
Sarvani Darmavaram ◽  
Ashwini Kodlipet Vasanth ◽  
...  

We report the persistent circulation of third-generation cephalosporin resistant Salmonella Typhi in Mumbai, linked to the acquisition and maintenance of a previously characterized IncX3 plasmid carrying the ESBL gene blaSHV-12 and the fluoroquinolone resistance gene qnrB7 in the genetic context of a triple mutant also associated with fluoroquinolone resistance.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S225-S225
Author(s):  
Nkuchia M M’ikanatha ◽  
Xin Yin ◽  
Yezhi Fu ◽  
Sameera Sayeed ◽  
Christopher Carr ◽  
...  

Abstract Background Pennsylvania participates in the National Antimicrobial Resistance Monitoring System (NARMS), which includes monitoring of Nontyphoidal Salmonella (NTS), a leading cause of bacterial foodborne illnesses in the United States. Methods Clinical NTS isolates submitted to the Pennsylvania Department of Health (2015-18) were tested for susceptibility to 15 antimicrobial agents and analyzed by whole-genome sequencing (WGS). Concurrently, we conducted a prospective microbiological survey of NTS in retail meat products (chicken breasts, ground turkey, and pork chops) with susceptibility testing and WGS. Results Of a sample of 426 clinical Salmonella isolates from humans analyzed for antimicrobial susceptibility, 65 (15.3%) had decreased susceptibility to ciprofloxacin (DSC). Ampicillin resistance was observed in 39 (9.2%) and 15 (3.5%) were ceftriaxone-resistant. Ten ceftriaxone-resistant isolates had genetic elements that confer resistance to third generation extended-spectrum cephalosporins (ESC) [blaCMY−2, n=8 and blaCTX-M-65, n=2]. The blaCTX-M-65- positive isolates had a mutation in gyrA that confers fluoroquinolone resistance. Thirteen clinical isolates carried plasmid-mediated fluoroquinolone resistance genes (PMQR) [qnrB19, qnrS1, qnrA1]. We detected NTS in 131 (3.8%) of 3480 meat samples tested. 7 (5.3%) had DSC, while 38 (29%) and 21 (16%) were resistant to ampicillin and ceftriaxone, respectively. Four S. Infantis isolates had DSC and a blaCTX-M-65 gene plus a mutation in gyrA. Thirteen meat isolates had the blaCMY-2 gene. One additional blaCTX-M-65-positive S. Infantis without gyrA from ground turkey (SRR6351119) differed from four clinical isolates by ≤10 single-nucleotide polymorphisms. Percent of isolates from patients and meat sources that demonstrated resistance to amoxicillin-clavulanate (AMC), ceftriaxone, and decreased susceptibility to ciprofloxacin (DSC) to nine antimicrobial classes tested. Among isolates from patients, resistance to ceftriaxone, a third-generation cephalosporin preferred for severe infections in children, increased from zero in 2015 to 5.8% in 2017. Overall, DSC increased in isolates from human sources while in strains from meat sources, DSC increased from zero in 2015 to over five percent in 2018. Conclusion NTS isolated from human and meat sources were multi-drug resistant. Demonstration of similar resistance genes in meat and in ill humans may be consistent with spread of antibiotic-resistant pathogens from food sources. Dissemination of genes that confer resistance to third generation cephalosporins and fluoroquinolones, including some on mobile plasmids, may undermine recommended treatment for severe NTS infections. These results underscore the need for antimicrobial stewardship efforts in both agriculture and human medicine. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document