scholarly journals Probiotic Bacilli Inhibit Salmonella Biofilm Formation Without Killing Planktonic Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahtab Hassanpour Tazehabadi ◽  
Ammar Algburi ◽  
Igor V. Popov ◽  
Alexey M. Ermakov ◽  
Vladimir A. Chistyakov ◽  
...  

Salmonellosis is a foodborne infection caused by Salmonella. Domestic poultry species are one of the main reservoirs of Salmonella, which causes the foodborne infection salmonellosis, and are responsible for many cases of animal-to-human transmission. Keeping backyard chickens is now a growing trend, increasing the frequency of direct contact with the flock and, by consequence, the incidence of Salmonella infections. Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 are probiotic bacilli that produce the bacteriocins subtilosin A and subtilin, respectively. The antimicrobial activity of the two strains was determined against the reference strain Micrococcus luteus ATCC 10420. The cell-free supernatant of B. subtilis KATMIRA1933 inhibited biofilm formation by Salmonella enterica subsp. enterica serovar Hadar, Salmonella enterica subsp. enterica serovar Enteritidis phage type 4, and Salmonella enterica subsp. enterica serovar Thompson by 51.1, 48.3, and 56.9%, respectively. The cell-free supernatant of B. amyloliquefaciens B-1895 inhibited the biofilm formation of these Salmonella strains by 30.4, 28.6, and 35.5%, respectively. These findings suggest that the bacillus strains may have the potential to be used as probiotics and antibiotic alternatives for the control of Salmonella in poultry. The number of planktonic cells was unaffected by treatment with the cell-free supernatant. A co-culture of the Salmonella strains with either bacilli showed no signs of growth inhibition, suggesting that it might have been quorum sensing that is affected by the two Bacillus strains.

Food Control ◽  
2013 ◽  
Vol 32 (2) ◽  
pp. 650-658 ◽  
Author(s):  
Hu-Hu Wang ◽  
Ke-Ping Ye ◽  
Qiu-Qin Zhang ◽  
Yang Dong ◽  
Xing-Lian Xu ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 06-16
Author(s):  
Lattab Aicha ◽  
Belkacem Imane ◽  
Djibaoui Rachid ◽  
Rebai Oifa ◽  
Chibani Abdelwaheb ◽  
...  

In the present study three isolates belonging to Pseudomonas sp and one reference strain of P. aeruginosa ATCC 27853 were tested for biofilm formation on two types of support (glass and polystyrene), using two cultures medium Tryptone Soy Broth (TSB) and Modified Biofilm Broth (MBB). The results showed that the quantity of biofilm formed depends on the nature of culture medium, where the rate of the adherent bacteria was more significant in TSB medium. Polystyrene was more favorable to bacteria for adherence compared to glass. We examined the effectiveness of three types of disinfectants, sodium hypochlorite, hydrogen peroxide and temperature on a biofim formed by the studied bacteria. Sodium hypochlorite reached good levels of biofilm eradication using all isolates adhered on the two types of support. Hydrogen peroxide exerted less significant effect compared to sodium hypochlorite, eliminating approximately 56% from the biofilm adhered on polystyrene at concentration of 3%. The elimination of biofilm temperature (80°C) was rather weak compared with the two chemical disinfectants. Our study included the testing of extracts of three plants: Allium sativum, Aloe vera and Lawsonia inermis on biofilm eradication formed by P. aeruginosa ATCC 27853. The effect of these plant extracts on planktonic cells was also studied. The results showed that Allium sativum and Lawsonia inermis inhibit both bacterial growth and biofilm formation and no activity was detected for Aloe vera extract.


2007 ◽  
Vol 135 (8) ◽  
pp. 1274-1281 ◽  
Author(s):  
T. M. PETERS ◽  
C. BERGHOLD ◽  
D. BROWN ◽  
J. COIA ◽  
A. M. DIONISI ◽  
...  

SUMMARYSalmonella is one of the most common causes of foodborne infection in Europe with Salmonella enterica serovar Enteritidis (S. Enteritidis) being the most commonly identified serovar. The predominant phage type for S. Enteritidis is phage type (PT) 4, although PT 8 has increased in incidence. Within these phage types, pulsed-field gel electrophoresis (PFGE) provides a method of further subdivision. The international project, Salm-gene, was established in 2001 to develop a database of PFGE profiles within nine European countries and to establish criteria for real-time pattern recognition. It uses DNA fingerprints of salmonellas to investigate outbreaks and to evaluate trends and emerging issues of foodborne infection within Europe. The Salm-gene database contains details of about 11 700 S. Enteritidis isolates, demonstrating more than 65 unique PFGE profiles. The clonal nature of S. Enteritidis is evidenced by the high similarity and distribution of PFGE profiles. Over 56% (6603/11 716) of the submitted isolates of several different phage types were profile SENTXB.0001, although this profile is most closely associated with PT 4. The next most common profiles, SENTXB.0002 and SENTXB.0005, were closely associated with PT 8 and PT 21 respectively. Studies to investigate the relationship of profile types with outbreaks and possible vehicles of infection suggest that the incidence of PFGE profile SENTXB.0002, and thus PT 8, in some countries may be due to importation of foods or food production animals from Eastern Europe, where PT 8 is amongst the most frequently identified phage types. Collation of subtyping data, especially in the commonly recognized phage types, is necessary in order to evaluate trends and emerging issues in salmonella infection.


2013 ◽  
Vol 7 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Marta A Almirón ◽  
Mara S Roset ◽  
Norberto Sanjuan

Brucella abortus causes brucellosis mainly in cattle. The infection is transmitted to humans by ingestion of animal products or direct contact with infected material. While the intracellular lifestyle of Brucella is well characterized, its extracellular survival is poorly understood. In nature, bacterial persistence is associated with biofilms, where aggregated cells are protected from adversity. The inability of Brucella abortus to aggregate under aerobiosis and that fact that the replicative niche of Brucella is characterized by microaerobic conditions prompted us to investigate the capacity of this pathogen to aggregate and grow in biofilms under microaerobiotic conditions. The results show that B. abortus aggregates and produces biofilms. The aggregates tolerate desiccation better than planktonic cells do, adhere and displace even in the absence of the lipopolysaccharide-O antigen, flagella, the transcriptional regulator VjbR, or the enzymes that synthesize, transport, and modify cyclic β (1,2) glucan.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeinab Rezaei ◽  
Saeid Khanzadi ◽  
Amir Salari

AbstractCurrently, the health benefits of probiotic bacteria are well known, and this has taken up a great deal of space in food science and health, both research and operational. On the other hand, anti-biofilm properties on food pathogens in the food and pharmaceutical industries have created an attractive challenge. This study aimed to describe the inhibitory activity of cell-free supernatants (CFS), planktonic cells, and biofilm form of lactobacilus strains (L. rhamnosus and L. plantarum) against food pathogens such as Pseudomonas aeruginosa and Listeria monocytogenes. Anti-bacterial activities of the CFS of lactobacillus strains were assessed by the microplate method and via violet staining. Evaluation of the antagonistic activity of planktonic cells and biofilm of LAB were performed by the spread plate method. The results showed the incubation time of 48 h was the best time to produce biofilm. Although the planktonic states reduce the pathogens bacterial about 1 –1.5 log, but in biofilm forms, decreased L. monocytogenes about 4.5 log compared to the control, and in the case of P. aeruginosa, a growth reduction of about 2.13 log was observed. Furthermore, biofilm formation of L. monocytogenes in the presence of L. rhamnosus cell-free supernatant was more weakly than L. plantarum CFS, but their CFS effect on reducing the bacterial population of P. aeruginosa was the same. According to the study, biofilm produced by probiotic strains can be considered a new approach for biological control. Also, cell-free supernatant can be used as postbiotic in the food and pharmaceutical industries.


2010 ◽  
Vol 76 (6) ◽  
pp. 2018-2022 ◽  
Author(s):  
Nikos G. Chorianopoulos ◽  
Efstathios D. Giaouris ◽  
Yiannis Kourkoutas ◽  
George-John E. Nychas

ABSTRACT Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AHLs was not able to affect the initial stage of biofilm formation by this pathogen.


2018 ◽  
Vol 41 (4) ◽  
pp. 353-363
Author(s):  
Alberto J. Valencia-Botin ◽  
Melesio Gutiérrez-Lomelí ◽  
Juan A. Morales-Del-Río ◽  
Pedro J. Guerrero-Medina ◽  
Miguel A. Robles-García ◽  
...  

Actualmente existe la necesidad de hacer frente al problema de la resistencia a los antibióticos y al uso indiscriminado de fungicidas químicos en la agricultura. El objetivo de este trabajo fue evaluar el efecto inhibitorio de extractos acuosos, metanólicos, acetónicos y hexánicos de hoja y tallo de Vitex mollis Kunth (Lamiaceae) contra diferentes bacterias (Escherichia coli, Micrococcus luteus, Salmonella enterica y Staphylococcus aureus) y especies del hongo Fusarium (F. verticillioides, F. oxysporum, F. tapsinum y F. oxysporum f.sp. lycopersici) de importancia en la salud y en la agricultura, así como determinar su composición química general. Se determinaron las concentraciones inhibitorias mínimas (CIM) de todos los extractos por la técnica de microdilución, excepto del hexánico, que no presentó inhibición en las bacterias estudiadas. S. enterica fue la bacteria que mostró mayor sensibilidad al extracto metanólico de tallo (CIM = 28 μg mL-1), le siguieron M. luteus (CIM = 32 μg mL-1), S. aureus (CIM = 75 μg mL-1) y E. coli (CIM = 80 μg mL- 1). Los extractos metanólicos y acuosos de tallo presentaron mayor porcentaje de inhibición contra los diferentes tipos de Fusarium evaluados por el método de dilución en agar. Los extractos de V. mollis inhibieron a F. verticillioides entre 62 y 91 % con 120 μg mL-1 de extracto. El orden de las especies de hongos inhibidas por los extractos fue: F. verticillioides > F. oxysporum > F. tapsinum > F. oxysporum f.sp. lycopersici. La composición química de las especies se determinó mediante pruebas para fenoles, taninos, flavonoides, triterpenos, alcaloides, cumarinas y saponinas. Ninguno de los extractos presentó alcaloides y saponinas. Los fenoles (37.1 mg EAG/g muestra seca) y flavonoides (26.8 mg EQ/g muestra seca) fueron los compuestos mayoritarios en los extractos metanólicos y acuosos. En conclusión, se requieren cantidades muy pequeñas de extracto para la inhibición de bacterias y de Fusarium; por lo tanto, V. mollis puede ser considerada una fuente de metabolitos para este fin y en la agricultura como control alternativo dentro de un manejo integrado de enfermedades.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Proceedings ◽  
2020 ◽  
Vol 76 (1) ◽  
pp. 2
Author(s):  
Alexey V. Rakov ◽  
Anatoly A. Yakovlev ◽  
Viacheslav V. Sinkov

Salmonella enterica subsp. enterica serovar Enteritidis is one of the most common zoonotic pathogens. We report here the genome sequence of Salmonella enterica subsp. enterica serovar Enteritidis S-25048 isolated from chicken (Gallus gallus domesticus) meat in Artyom, Russia. The assembled genome size was 4,695,145 bp. A total of 4565 coding genes, four rRNAs, 62 tRNAs, and 14 noncoding RNAs were predicted. To our knowledge, this is the first publically deposited annotated genome of this serovar isolated in Russia. The Salmonella Enteritidis S-25048 genome is suitable for use as a reference strain of Salmonella Enteritidis isolated in Russia.


Sign in / Sign up

Export Citation Format

Share Document