scholarly journals Evolutionarily Stable Coevolution Between a Plastic Lytic Virus and Its Microbial Host

2021 ◽  
Vol 12 ◽  
Author(s):  
Melinda Choua ◽  
Michael R. Heath ◽  
Juan A. Bonachela

Hosts influence and are influenced by viral replication. Cell size, for example, is a fundamental trait for microbial hosts that can not only alter the probability of viral adsorption, but also constrain the host physiological processes that the virus relies on to replicate. This intrinsic connection can affect the fitness of both host and virus, and therefore their mutual evolution. Here, we study the coevolution of bacterial hosts and their viruses by considering the dependence of viral performance on the host physiological state (viral plasticity). To this end, we modified a standard host-lytic phage model to include viral plasticity, and compared the coevolutionary strategies emerging under different scenarios, including cases in which only the virus or the host evolve. For all cases, we also obtained the evolutionary prediction of the traditional version of the model, which assumes a non-plastic virus. Our results reveal that the presence of the virus leads to an increase in host size and growth rate in the long term, which benefits both interacting populations. Our results also show that viral plasticity and evolution influence the classic host quality-quantity trade-off. Poor nutrient environments lead to abundant low-quality hosts, which tends to increase viral infection time. Conversely, richer nutrient environments lead to fewer but high-quality hosts, which decrease viral infection time. Our results can contribute to advancing our understanding of the microbial response to changing environments. For instance, both cell size and viral-induced mortality are essential factors that determine the structure and dynamics of the marine microbial community, and therefore our study can improve predictions of how marine ecosystems respond to environmental change. Our study can also help devise more reliable strategies to use phage to, for example, fight bacterial infections.

2018 ◽  
Author(s):  
Melinda Choua ◽  
Juan A. Bonachela

AbstractViruses can infect any organism. Because viruses use the host machinery to replicate, their performance depends on the host physiological state. For bacteriophages, this host-viral performance link has been characterized empirically and with intracellular theories. Such theories are too detailed to be included in models that study host-phage interactions in the long term, which hinders our understanding of systems that range from pathogens infecting gut bacteria to marine phage shaping present and future oceans. Here, we combined data and models to study the short- and long-term consequences that host physiology has on bacteriophage performance. We compiled data showing the dependence of lytic-phage traits on host growth rate (viral phenotypic “plasticity”) to deduce simple expressions representing such plasticity. We included these expressions in a standard host-phage model, to understand how viral plasticity can break the expected evolutionary trade-off between infection time and viral offspring number. Furthermore, viral plasticity influences dramatically dynamic scenarios (e.g. sudden nutrient pulses or host starvation). We show that the effect of plasticity on offspring number, not generation time, drives the phage ecological and evolutionary dynamics. Standard models do not account for this plasticity, which handicaps their predictability in realistic environments. Our results highlight the importance of viral plasticity to unravel host-phage interactions, and the need of laboratory and field experiments to characterize viral plastic responses across systems.


2015 ◽  
Vol 2 (1) ◽  
pp. 30-34
Author(s):  
K. Korobkova ◽  
V. Patyka

Contemporary state of the distribution of mycoplasma diseases of cultivated crops in Ukraine was analyzed. The changes of the physiological state of plant cells under the impact of mollicutes were investigated. It was demonstrated that there is temporary increase in the activity of peroxidase, catalase, polyphenoloxidase, phenylalanine-ammonia-lyase at the early stages of interaction. The adhesive properties are changed in the mollicutes under the impact of plant lectin; there is synthesis of new polypeptides. It was determined that the phytopathogenic acholeplasma is capable of producing a complex of proteolytic enzymes into the culture me- dium. It was concluded that when plant cells are infected with acholeplasma, a number of signaling interactions and metabolic transformations condition the recognition of pathogenesis and ensure the aggregate response of a plant to stress in the form of defense reactions. It was assumed that some specifi cities of the biology of phy- topathogenic acholeplasma determine their avoiding the immune mechanisms of plants and promote long-term persistence of mollicutes.


2019 ◽  
Vol 316 (5) ◽  
pp. H1113-H1123 ◽  
Author(s):  
Sameed Ahmed ◽  
Rui Hu ◽  
Jessica Leete ◽  
Anita T. Layton

Sex differences in blood pressure and the prevalence of hypertension are found in humans and animal models. Moreover, there has been a recent explosion of data concerning sex differences in nitric oxide, the renin-angiotensin-aldosterone system, inflammation, and kidney function. These data have the potential to reveal the mechanisms underlying male-female differences in blood pressure control. To elucidate the interactions among the multitude of physiological processes involved, one may apply computational models. In this review, we describe published computational models that represent key players in blood pressure regulation, and highlight sex-specific models and their findings.


2021 ◽  
Vol 9 (4) ◽  
pp. 762
Author(s):  
Lucia Henrici De Angelis ◽  
Noemi Poerio ◽  
Vincenzo Di Pilato ◽  
Federica De Santis ◽  
Alberto Antonelli ◽  
...  

Phage therapy is now reconsidered with interest in the treatment of bacterial infections. A major piece of information for this application is the definition of the molecular targets exploited by phages to infect bacteria. Here, the genetic basis of resistance to the lytic phage φBO1E by its susceptible host Klebsiella pneumoniae KKBO-1 has been investigated. KKBO-1 phage-resistant mutants were obtained by infection at high multiplicity. One mutant, designated BO-FR-1, was selected for subsequent experiments, including virulence assessment in a Galleria mellonella infection model and characterization by whole-genome sequencing. Infection with BO-FR-1 was associated with a significantly lower mortality when compared to that of the parental strain. The BO-FR-1 genome differed from KKBO-1 by a single nonsense mutation into the wbaP gene, which encodes a glycosyltransferase involved in the first step of the biosynthesis of the capsular polysaccharide (CPS). Phage susceptibility was restored when BO-FR-1 was complemented with the constitutive wbaP gene. Our results demonstrated that φBO1E infects KKBO-1 targeting the bacterial CPS. Interestingly, BO-FR-1 was less virulent than the parental strain, suggesting that in the context of the interplay among phage, bacterial pathogen and host, the emergence of phage resistance may be beneficial for the host.


Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

Abstract Purpose of Review Society is concerned about the long-term condition of the forests. Although a clear definition of forest health is still missing, to evaluate forest health, monitoring efforts in the past 40 years have concentrated on the assessment of tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree growth trends are difficult to interpret because of sampling bias, and ring width patterns do not provide any information about tree physiological processes. Recent Findings In the past two decades, tree-ring stable isotopes have been used not only to reconstruct the impact of past climatic events, such as drought, but also in the study of forest decline induced by air pollution episodes, and other natural disturbances and environmental stress, such as pest outbreaks and wildfires. They have proven to be useful tools for understanding physiological processes and tree response to such stress factors. Summary Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.


2009 ◽  
Vol 41 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Anna G. Orr ◽  
Anup Sharma ◽  
Nikolaus B. Binder ◽  
Andrew H. Miller ◽  
Bradley D. Pearce

Author(s):  
A. G. Richter ◽  
Adrian Shields ◽  
Abid Karim ◽  
David Birch ◽  
Sian Faustini ◽  
...  

COVID-19 has been associated with both transient and persistent systemic symptoms that do not appear to be a direct consequence of viral infection. The generation of autoantibodies has been proposed as a mechanism to explain these symptoms. To understand this phenomenon in more detail, we investigated the frequency and specificity of clinically relevant autoantibodies in 84 individuals previously infected with SARS-CoV-2, suffering from COVID-19 of varying severity in both the acute and convalescent setting. These were compared with results from 32 individuals who were on ITU for non COVID reasons. We demonstrate a higher frequency of autoantibodies in the COVID-19 ITU group compared with non-COVID-19 ITU disease control patients and that autoantibodies were also found in the serum 3-5 months post COVID-19 infection. Non-COVID patients displayed a diverse pattern of autoantibodies; in contrast, the COVID-19 groups had a more restricted panel of autoantibodies including skin, skeletal muscle and cardiac antibodies. Our results demonstrate that severe COVID-19 induces a pattern of autoantibodies that may correlate with and contribute to the immune pathology associated with the long-term sequelae of infection.


1982 ◽  
Vol 11 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Herman Mielants ◽  
Eric Dhondt ◽  
Luc Goethals ◽  
Gust Verbruggen ◽  
Eric Veys

Sign in / Sign up

Export Citation Format

Share Document