scholarly journals The Structure, Composition, and Role of Periplasmic Stator Scaffolds in Polar Bacterial Flagellar Motors

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaotian Zhou ◽  
Anna Roujeinikova

In the bacterial flagellar motor, the cell-wall-anchored stator uses an electrochemical gradient across the cytoplasmic membrane to generate a turning force that is applied to the rotor connected to the flagellar filament. Existing theoretical concepts for the stator function are based on the assumption that it anchors around the rotor perimeter by binding to peptidoglycan (P). The existence of another anchoring region on the motor itself has been speculated upon, but is yet to be supported by binding studies. Due to the recent advances in electron cryotomography, evidence has emerged that polar flagellar motors contain substantial proteinaceous periplasmic structures next to the stator, without which the stator does not assemble and the motor does not function. These structures have a morphology of disks, as is the case with Vibrio spp., or a round cage, as is the case with Helicobacter pylori. It is now recognized that such additional periplasmic components are a common feature of polar flagellar motors, which sustain higher torque and greater swimming speeds compared to peritrichous bacteria such as Escherichia coli and Salmonella enterica. This review summarizes the data available on the structure, composition, and role of the periplasmic scaffold in polar bacterial flagellar motors and discusses the new paradigm for how such motors assemble and function.

1998 ◽  
Vol 180 (21) ◽  
pp. 5580-5590 ◽  
Author(s):  
Michael A. A. Mathews ◽  
Hua Lucy Tang ◽  
David F. Blair

ABSTRACT The FliM protein of Escherichia coli is required for the assembly and function of flagella. Genetic analyses and binding studies have shown that FliM interacts with several other flagellar proteins, including FliN, FliG, phosphorylated CheY, other copies of FliM, and possibly MotA and FliF. Here, we examine the effects of a set of linker insertions and partial deletions in FliM on its binding to FliN, FliG, CheY, and phospho-CheY and on its functions in flagellar assembly and rotation. The results suggest that FliM is organized into multiple domains. A C-terminal domain of about 90 residues binds to FliN in coprecipitation experiments, is most stable when coexpressed with FliN, and has some sequence similarity to FliN. This C-terminal domain is joined to the rest of FliM by a segment (residues 237 to 247) that is poorly conserved, tolerates linker insertion, and may be an interdomain linker. Binding to FliG occurs through multiple segments of FliM, some in the C-terminal domain and others in an N-terminal domain of 144 residues. Binding of FliM to CheY and phospho-CheY was complex. In coprecipitation experiments using purified FliM, the protein bound weakly to unphosphorylated CheY and more strongly to phospho-CheY, in agreement with previous reports. By contrast, in experiments using FliM in fresh cell lysates, the protein bound to unphosphorylated CheY about as well as to phospho-CheY. Determinants for binding CheY occur both near the N terminus of FliM, which appears most important for binding to the phosphorylated protein, and in the C-terminal domain, which binds more strongly to unphosphorylated CheY. Several different deletions and linker insertions in FliM enhanced its binding to phospho-CheY in coprecipitation experiments with protein from cell lysates. This suggests that determinants for binding phospho-CheY may be partly masked in the FliM protein as it exists in the cytoplasm. A model is proposed for the arrangement and function of FliM domains in the flagellar motor.


Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1275-1283 ◽  
Author(s):  
Kai M. Thormann ◽  
Anja Paulick

Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor–stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.


Author(s):  
Ryan Pooran ◽  
Mohamed Al-Fandi ◽  
Steve Tung ◽  
Jin-Woo Kim ◽  
Nalini Kotagi ◽  
...  

Microfluidic actuators are extremely important components of microfluidic systems used in biological, chemical and biochemical analyses. We are in the process of developing hybrid microsystem devices that utilize flagellar motors in tethered Escherichia coli (E.coli) cells as actuators. In this study we describe the robustness of the flagellar motor actuators. To examine the robustness of the actuators we observe the behavior of the cells when exposed to a hydrodynamic load. With this method we are able to determine the torque generated by the flagellar motor and the adhesion force of the flagellar filament to the substrate. Using hydrodynamic loading we are also able to synchronize the rotation of multiple cells. Finally, we present data which represents the lifetime of the flagellar motor actuators.


2021 ◽  
Author(s):  
Jun Xu ◽  
Nobuo Koizumi ◽  
Yusuke V Morimoto ◽  
Ryo Ozuru ◽  
Toshiyuki Masuzawa ◽  
...  

Nucleotide second messengers are universally crucial factors for the signal transduction of various organisms. In prokaryotes, cyclic nucleotide messengers are involved in the bacterial life cycle and function, such as virulence, biofilm formation, and others mainly via gene regulation. Here we show that the swimming motility of a soil bacterium is rapidly modulated by cyclic adenosine monophosphate (cAMP) synthesized upon light exposure. Analysis of a loss-of-photoresponsivity mutant obtained by transposon random mutagenesis determined the novel sensory gene, and its expression in Escherichia coli through codon optimization revealed the light-dependent synthesis of cAMP. GFP labeling showed the localization of the photoresponsive enzyme at the cell poles where flagellar motors reside. The present findings highlight the new role of cAMP that rapidly controls the flagella-dependent bacterial motility and the global distribution of the discovered photoactivated cyclase among diverse microbial species.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


2010 ◽  
Vol 30 (03) ◽  
pp. 150-155 ◽  
Author(s):  
J. W. Wang ◽  
J. Eikenboom

SummaryVon Willebrand factor (VWF) is a pivotal haemostatic protein mediating platelet adhesion to injured endothelium and carrying coagulation factor VIII (FVIII) in the circulation to protect it from premature clearance. Apart from the roles in haemostasis, VWF drives the formation of the endothelial cell specific Weibel-Palade bodies (WPBs), which serve as a regulated storage of VWF and other thrombotic and inflammatory factors. Defects in VWF could lead to the bleeding disorder von Willebrand disease (VWD).Extensive studies have shown that several mutations identified in VWD patients cause an intracellular retention of VWF. However, the effects of such mutations on the formation and function of its storage organelle are largely unknown. This review gives an overview on the role of VWF in WPB biogenesis and summarizes the limited data on the WPBs formed by VWD-causing mutant VWF.


Author(s):  
Barbara Schönig

Going along with the end of the “golden age” of the welfare state, the fordist paradigm of social housing has been considerably transformed. From the 1980s onwards, a new paradigm of social housing has been shaped in Germany in terms of provision, institutional organization and design. This transformation can be interpreted as a result of the interplay between the transformation of national welfare state and housing policies, the implementation of entrepreneurial urban policies and a shift in architectural and urban development models. Using an integrated approach to understand form and function of social housing, the paper characterizes the new paradigm established and nevertheless interprets it within the continuity of the specific German welfare resp. housing regime, the “German social housing market economy”.


Sign in / Sign up

Export Citation Format

Share Document