scholarly journals Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification

2021 ◽  
Vol 12 ◽  
Author(s):  
Giuseppe Pezzotti ◽  
Miyuki Kobara ◽  
Tenma Asai ◽  
Tamaki Nakaya ◽  
Nao Miyamoto ◽  
...  

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 445 ◽  
Author(s):  
Gina Wall ◽  
Jose L. Lopez-Ribot

Fungal infections represent an increasing threat to a growing number of immune- and medically compromised patients. Fungi are eukaryotic organisms and, as such, there is a limited number of selective targets that can be exploited for antifungal drug development. This has also resulted in a very restricted number of antifungal drugs that are clinically available for the treatment of invasive fungal infections at the present time—polyenes, azoles, echinocandins, and flucytosine. Moreover, the utility of available antifungals is limited by toxicity, drug interactions and the emergence of resistance, which contribute to high morbidity and mortality rates. This review will present a brief summary on the landscape of current antifungals and those at different stages of clinical development. We will also briefly touch upon potential new targets and opportunities for novel antifungal strategies to combat the threat of fungal infections.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4999 ◽  
Author(s):  
Miha Tome ◽  
Jure Zupan ◽  
Zorica Tomičić ◽  
Tadeja Matos ◽  
Peter Raspor

Candidemia and other forms of invasive fungal infections caused byCandida glabrataand to a lesser extentSaccharomyces cerevisiaeare a serious health problem, especially if their steadily rising resistance to the limited range of antifungal drugs is taken into consideration. Various drug combinations are an attractive solution to the resistance problem, and some drug combinations are already common in the clinical environment due to the nature of diseases or therapies. We tested a few of the common antifungal-immunomodulatory drug combinations and evaluated their effect on selected strains ofC. glabrataandS. cerevisiae. The combinations were performed using the checkerboard microdilution assay and interpreted using the Loewe additivity model and a model based on the Bliss independence criterion. A synergistic interaction was confirmed between calcineurin inhibitors (Fk506 and cyclosporine A) and antifungals (fluconazole, itraconazole, and amphotericin B). A new antagonistic interaction between mycophenolic acid (MPA) and azole antifungals was discovered in non-resistant strains. A possible mechanism that explains this is induction of the Cdr1 efflux pump by MPA inC. glabrataATCC 2001. The Pdr1 regulatory cascade plays a role in overall resistance to fluconazole, but it is not essential for the antagonistic interaction. This was confirmed by the Cgpdr1Δ mutant still displaying the antagonistic interaction between the drugs, although at lower concentrations of fluconazole. This antagonism calls into question the use of simultaneous therapy with MPA and azoles in the clinical environment.


2018 ◽  
Vol 4 (4) ◽  
pp. 133 ◽  
Author(s):  
Nikolaos Spernovasilis ◽  
Diamantis Kofteridis

Pre-existing liver disease in patients with invasive fungal infections further complicates their management. Altered pharmacokinetics and tolerance issues of antifungal drugs are important concerns. Adjustment of the dosage of antifungal agents in these cases can be challenging given that current evidence to guide decision-making is limited. This comprehensive review aims to evaluate the existing evidence related to antifungal treatment in individuals with liver dysfunction. This article also provides suggestions for dosage adjustment of antifungal drugs in patients with varying degrees of hepatic impairment, after accounting for established or emerging pharmacokinetic–pharmacodynamic relationships with regard to antifungal drug efficacy in vivo.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACT An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Connor Horn ◽  
Govindsamy Vediyappan

Fungal infections affect 300 million people and cause 1.5 million deaths globally per year. With the number of immunosuppressed patients increasing steadily, there is an increasing number of patients infected with opportunistic fungal infections such as infections caused by the species of Candida and Cryptococcus. In fact, the drug-resistant Can. krusei and the emerging pan-antifungal resistant Can. auris pose a serious threat to human health as the existing limited antifungals are futile. To further complicate therapy, fungi produce capsules and spores that are resistant to most antifungal drugs/host defenses. Novel antifungal drugs are urgently needed to fill unmet medical needs. From screening a collection of medicinal plant sources for antifungal activity, we have identified an active fraction from the rhizome of Cyperus rotundus, the nut grass plant. The fraction contained α-Cyperone, an essential oil that showed fungicidal activity against different species of Candida. Interestingly, the minimal inhibitory concentration of α-Cyperone was reduced 8-fold when combined with a clinical antifungal drug, fluconazole, indicating its antifungal synergistic potential and could be useful for combination therapy. Furthermore, α-Cyperone affected the synthesis of the capsule in Cryp. neoformans, a causative agent of fungal meningitis in humans. Further work on mechanistic understanding of α-Cyperone against fungal virulence could help develop a novel antifungal agent for drug-resistant fungal pathogens.


2021 ◽  
Author(s):  
Michael A Pfaller ◽  
Shawn A Messer ◽  
Lalitagauri M Deshpande ◽  
Paul R Rhomberg ◽  
Eric A Utt ◽  
...  

Life-threatening infections can be caused by a fungus called Candida auris (shortened to C. auris) that is found in the hospital environment. This study looked at how well different drugs could treat C. auris infection. Samples were collected from 36 people who had C. auris infection. The samples were treated with single drugs and in combination. We found that the main drug types did not work on most samples. Genetic differences we found in the C. auris samples could explain why the main drugs did not work. However, a drug called isavuconazole worked on almost all samples. We also found that a drug called anidulafungin worked better against C. auris when it was combined with either isavuconazole or another drug called voriconazole. To read the full Plain Language Summary of this article, click on the View Article button above and download the PDF.


Author(s):  
Suresh Ambati ◽  
Tuyetnhu Pham ◽  
Zachary A. Lewis ◽  
Xiaorong Lin ◽  
Richard B. Meagher

Candida albicans causes life-threatening disseminated candidiasis. Individuals at greatest risk have weakened immune systems. An outer cell wall, exopolysaccharide matrix, and biofilm rich in oligoglucans and oligomannans help Candida spp. evade host defenses. Even after antifungal treatment, the one-year mortality rate exceeds 25%. Undoubtedly, there is room to improve drug performance. The mammalian C-type lectin pathogen receptors Dectin-1 and Dectin-2 bind to fungal oligoglucans and oligomannans, respectively. We previously coated amphotericin B-loaded liposomes, AmB-LLs, pegylated analogs of AmBisome, with the ligand binding domains of these two Dectins. DectiSomes, DEC1-AmB-LLs and DEC2-AmB-LLs, showed two distinct patterns of binding to the exopolysaccharide matrix surrounding C. albicans hyphae grown in vitro. Here we showed that DectiSomes were preferentially associated with fungal colonies in the kidneys. In a neutropenic mouse model of candidiasis, DEC1-AmB-LLs and DEC2-AmB-LLs delivering only one dose of 0.2 mg/kg AmB reduced the kidney fungal burden several fold relative to AmB-LLs. DEC1-AmB-LLs and DEC2-AmB-LLs increased the percent of surviving mice 2.5-fold and 8.3-fold, respectively, relative to AmB-LLs. Dectin-2 targeting of anidulafungin loaded liposomes, DEC2-AFG-LLs, and of commercial AmBisome, DEC2-AmBisome, reduced fungal burden in the kidneys several fold over their untargeted counterparts. The data herein suggest that targeting of a variety of antifungal drugs to fungal glycans may achieve lower safer effective doses and improve drug efficacy against a variety of invasive fungal infections.


2020 ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACTAn ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are pan-resistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug, fosmanogepix, is currently in Phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90 0.03 mg/L; range 0.004-0.06 mg/L). The MGX epidemiological cutoff value (ECV, 99% cutoff) for the tested C. auris isolates was 0.06 mg/L. MGX was 8-32-fold more active than the echinocandins, 16-64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or GEOMEAN values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris pan-resistant isolates was 0.008-0.015 mg/L, and the median and mode MIC values were 0.015 mg/L, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Ryan Kean ◽  
Christopher Delaney ◽  
Leighann Sherry ◽  
Andrew Borman ◽  
Elizabeth M. Johnson ◽  
...  

ABSTRACT Candida auris has emerged as a significant global nosocomial pathogen. This is primarily due to its antifungal resistance profile but also its capacity to form adherent biofilm communities on a range of clinically important substrates. While we have a comprehensive understanding of how other Candida species resist and respond to antifungal challenge within the sessile phenotype, our current understanding of C. auris biofilm-mediated resistance is lacking. In this study, we are the first to perform transcriptomic analysis of temporally developing C. auris biofilms, which were shown to exhibit phase- and antifungal class-dependent resistance profiles. A de novo transcriptome assembly was performed, where sequenced sample reads were assembled into an ~11.5-Mb transcriptome consisting of 5,848 genes. Differential expression (DE) analysis demonstrated that 791 and 464 genes were upregulated in biofilm formation and planktonic cells, respectively, with a minimum 2-fold change. Adhesin-related glycosylphosphatidylinositol (GPI)-anchored cell wall genes were upregulated at all time points of biofilm formation. As the biofilm developed into intermediate and mature stages, a number of genes encoding efflux pumps were upregulated, including ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporters. When we assessed efflux pump activity biochemically, biofilm efflux was greater than that of planktonic cells at 12 and 24 h. When these were inhibited, fluconazole sensitivity was enhanced 4- to 16-fold. This study demonstrates the importance of efflux-mediated resistance within complex C. auris communities and may explain the resistance of C. auris to a range of antimicrobial agents within the hospital environment. IMPORTANCE Fungal infections represent an important cause of human morbidity and mortality, particularly if the fungi adhere to and grow on both biological and inanimate surfaces as communities of cells (biofilms). Recently, a previously unrecognized yeast, Candida auris, has emerged globally that has led to widespread concern due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is also able to grow as a biofilm that is highly resistant to antifungal agents, yet we are unclear about how it does this. Here, we used a molecular approach to investigate the genes that are important in causing the cells to be resistant within the biofilm. The work provides significant insights into the importance of efflux pumps, which actively pump out toxic antifungal drugs and therefore enhance fungal survival within a variety of harsh environments.


2020 ◽  
Vol 6 (4) ◽  
pp. 321
Author(s):  
Hans Carolus ◽  
Siebe Pierson ◽  
Katrien Lagrou ◽  
Patrick Van Dijck

Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.


Sign in / Sign up

Export Citation Format

Share Document