scholarly journals Modulation of Cardiac Fibrosis in and Beyond Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Dong Fan ◽  
Zamaneh Kassiri

The extracellular matrix (ECM) plays important roles in maintaining physiological structure and functions of various tissues and organs. Cardiac fibrosis is the excess deposition of ECM, including both fibrillar (collagens I and III) and non-fibrillar proteins. Characteristics of fibrosis can vary depending on the pathology, with focal fibrosis occurring following myocardial infarction (MI), and diffuse interstitial and perivascular fibrosis mainly in non-ischemic heart diseases. Compliance of the fibrotic tissue is significantly lower than the normal myocardium, and this can compromise the diastolic, as well as systolic dysfunction. Therefore, strategies to combat cardiac fibrosis have been investigated. Upon injury or inflammation, activated cardiac fibroblasts (myofibroblasts) produce more ECM proteins and cause fibrosis. The activation could be inhibited or the myofibroblasts could be ablated by targeting their specific expressed proteins. Modulation of tissue inhibitors of metalloproteinases (TIMPs) and moderate exercise can also suppress cardiac fibrosis. More recently, sex differences in cardiac fibrosis have come to light with differential fibrotic response in heart diseases as well as in fibroblast functions in vitro. This mini-review discusses recent progress in cardiac fibroblasts, TIMPs, sex differences and exercise in modulation of cardiac fibrosis.

Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.


2021 ◽  
Vol 22 (18) ◽  
pp. 9944
Author(s):  
Yongwoon Lim ◽  
Anna Jeong ◽  
Duk-Hwa Kwon ◽  
Yeong-Un Lee ◽  
Young-Kook Kim ◽  
...  

Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-β1 (TGF-β1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-β1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-β1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-β1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Lichan Tao ◽  
Xiaoting Wu ◽  
Ping Chen ◽  
Shanshan Li ◽  
Xiaomin Zhang ◽  
...  

Background: Cardiac fibrosis, a result of multiple injurious insults in heart, is a final common manifestation of chronic heart diseases and can lead to end-stage cardiac failure. MicroRNAs (miRNAs, miRs) participate in many essential biological processes and their dysfunction has been implicated in a variety of cardiovascular diseases including fibrosis. miR-433 has recently been implicated in renal fibrosis, however, its role in cardiac fibrosis is unclear. Methods and results: miR-433 was increased in heart samples from dilated cardiomyopathy patients as determined by qRT-PCRs. In addition, miR-433 was also consistently upregulated in mice model of cardiac fibrosis after myocardial infarction or heart failure. Additionally, miR-433 was found to be enriched in fibroblasts compared to cardiomyocytes. In neonatal cardiac fibroblasts, forced expression of miR-433 promoted cell proliferation as indicated by EdU and Ki-67 staining. Moreover, miR-433 overexpression promoted the transdifferentiation of fibroblasts into myofibroblasts as determined by qRT-PCR and western blot for α-SMA and collagen whether in the presence of TGF-β or not, indicating that miR-433 is sufficient to induce fibrosis. In addition, knockdown of miR-433 inhibited proliferation and the transdifferentiation into myofibroblasts, indicating that miR-433 is required for cardiac fibrosis. Interestingly, miR-433 did not affect the migration of cardiac fibroblast. Importantly, miR-433 antagomir could partially attenuate cardiac fibrosis induced by myocardial infarction in mice. Conclusion: both in vitro and in vivo. Inhibition of miR-433 represents a novel therapeutic strategy for cardiac fibrosis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Lejla Medzikovic ◽  
Laila Aryan ◽  
Gregoire Ruffenach ◽  
Min Li ◽  
Nicoletta Savalli ◽  
...  

Myocardial fibrosis promotes heart failure (HF) progression by impairing myocardial compliance, but also may predispose to myocardial calcification, further impairing cardiac function. Transition of resident cardiac fibroblast (CF) to pro-fibrotic myofibroblasts (MF) and osteogenic cell fates (OF) are key events which are partially controlled by microRNAs (miRs). To discover novel miRs involved in myocardial fibrosis and calcification, we compared online-available microarray datasets of left ventricles (LV) from failing human and mouse hearts. Assessing differentially-expressed miRs known to regulate fibrosis and calcification genes revealed that miR-129-5p is significantly downregulated in HF LV. Bioinformatic target analysis revealed small leucin-rich proteoglycan Asporin (Aspn) and SRY-Box Transcription Factor 9 (Sox9) as two novel miR-129-5p targets upregulated in both mouse and human diseased LV. Thus far, nothing is known about miR-129-5p in cardiac fibrosis and calcification. Additionally, the role of Asporin in myocardial fibrosis and the roles of either Asporin or Sox9 in myocardial calcification remain undiscovered. We show that miR-129-5p is expressed in CF in mouse and human hearts and is downregulated in CF of both HF patients and Angiotensin II (AngII)-injured mice, while Asporin and Sox9 are upregulated in CF of HF LV. In vitro , AngII or transforming growth factor-β downregulated miR-129-5p expression in primary adult mouse CF. Overexpression of miR-129-5p in CF inhibited expression of MF and OF transition markers, reduced migration, collagen production and calcium deposition. We validated Asporin and Sox9 as direct targets of miR-129-5p. Accordingly, silencing of Asporin and Sox9 in CF attenuated molecular and functional characteristics of MF and OF transition. Strikingly, systemic delivery of miR-129-5p mimics in mice directly targets CF and is sufficient to rescue preexisting AngII-induced myocardial fibrosis, calcification, diastolic- and systolic dysfunction. In conclusion, miR-129-5p rescues myocardial fibrosis and calcification by attenuating MF and OF transition via inhibition of Asporin and Sox9 in CF and is a promising therapeutic target.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
David Barbosa ◽  
Melanie Wehmöller ◽  
Maximilian R Spinner ◽  
Ulrich Rüther ◽  
Margriet Ouwens

Fibrosis, which occurs in various heart diseases like acute myocardial ischemia and pressure overload, is triggered by the differentiation of fibroblasts into myofibroblasts. Dysregulation of this reparative mechanism results in excessive collagen accumulation leading to cardiac stiffness and impaired heart function. The aim of this study was to determine whether the rhubarb anthraquinone Rhein, a drug already used as treatment for chondroarthritis, prevents the transdifferentiation of cardiac fibroblasts. We observed that Rhein pre-treatment ameliorates the cardiac function and reduces adverse remodeling after acute myocardial infarction in mice, in vivo . In primary human cardiac fibroblasts, Rhein incubation dose-dependently inhibited the TGF-β-mediated upregulation of α-SMA, the master marker for myofibrolasts, and prevented the contraction of fibroblast-populated collagen gel lattices upon TGF-β stimulation. Further, Rhein reduced TGFβ-R1 expression in primary human cardiac fibroblast, resulting in decreased SMAD2 phosphorylation and blunting of the fibrogenic response. Furthermore, Rhein stabilized protein levels of SMAD7, a key inhibitor of TGF-β signaling. Collectively, these data show for the first time that Rhein administration prevents cardiac fibrosis in vivo and in vitro by blunting the TGF-β signaling pathway, and identify Rhein as potential therapeutic treatment to prevent excessive fibrosis and adverse remodeling in cardiac pathologies.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Shuang Li ◽  
Dong Han ◽  
Dachun Yang

Background: Hypertensive ventricular remodeling is a common cause of heart failure. Activation and accumulation of cardiac fibroblasts is the key contributors to this progression. Our previous studies indicate that transient receptor potential ankyrin 1 (TRPA1), a Ca 2+ channel necessary and sufficient, play a prominent role in ventricular remodeling. However, the molecular mechanisms regulating remain poorly understood. Methods: We used TRPA1 agonists cinnamaldehyde (CA) pretreatment and TRPA1 knockout mice to understand the role of TRPA1 in ventricular remodeling of hypertensive heart. We also examine the mechanisms through gene transfection and in vitro experiments. Results: TRPA1 overexpression fully activated myofibroblast transformation, while fibroblasts lacking TRPA1 were refractory to transforming growth factor β (TGF-β) -induced transdifferentiation. TRPA1 knockout mice showed hypertensive ventricular remodeling reversal following pressure overload. We found that the TGF-β induced TRPA1 expression through calcineurin-NFAT-Dyrk1A signaling pathway via the TRPA1 promoter. Once induced, TRPA1 activates the Ca 2+ -responsive protein phosphatase calcineurin, which itself induced myofibroblast transdifferentiation. Moreover, inhibition of calcineurin prevented TRPA1-dependent transdifferentiation. Conclusion: Our study provides the first evidence that TRPA1 regulation in cardiac fibroblasts transformation in response to hypertensive stimulation. The results suggesting a comprehensive pathway for myofibroblast formation in conjunction with TGF-β, Calcineurin, NFAT and Dyrk1A. Furthermore, these data indicate that negative modulation of cardiac fibroblast TRPA1 may represent a therapeutic strategy against hypertensive cardiac remodeling.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Sandra Kunze ◽  
Vera Regitz-Zagrosek

Clinical and animal studies showed in female pressure-overloaded hearts less cardiac fibrosis and collagen I and III gene expression compared to males, suggesting an inhibitory effect of 17β-Estradiol (E2) on collagens. Therefore we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression in isolated rat cardiac fibroblasts from both sexes. Cardiac fibroblasts were isolated from adult male and female Wistar rats, and treated with E2 (10-8M), vehicle, ERα and ERβ-agonist (10-7M) and/or pre-treated with ICI 182,780 (10-5M) for 24h. Cellular localization of ER in cardiac fibroblasts with/without E2 was detected by immunofluorescence staining, and expression of both ER was determined by western blot. Expression of collagen I and III was determined by qRT-PCR and western blot. E2-treatment led to a nuclear translocation of ERα and ERβ in cardiac fibroblasts, suggesting the functional activity of ER as transcription factors. Furthermore in cardiac fibroblasts from female rats E2 led to a significant down-regulation of collagen I and III gene and protein expression. In contrast there was a significant increase of collagen I and III levels in fibroblasts isolated from male rat hearts by E2. E2-effect could be inhibited by ICI 182, 780 indicating the involvement of ER. In cardiac fibroblasts from female rats, ERα-agonist treatment led to a significant down-regulation of collagen I and III mRNA level, but ERβ-agonist had no effects. In contrast, ERβ-agonist treatment of cardiac fibroblasts from males increased collagen I and III mRNA, but no changes with ERα agonist-treatment were detected. ERα protein levels displayed no sex differences at basal level. After E2-treatment ERα protein was up-regulated in male cells, but decreased in cardiac fibroblasts from females. ERβ protein was higher in female cells compared to males, but the expression was not regulated by E2 in both sexes. Sex-specific regulation of collagen I and III expression by E2 in cardiac fibroblasts might be responsible for sex-differences in cardiac fibrosis. This might be due to sexually dimorphic ER expression and regulation. Understanding how E2 and ER mediate sex-differences in cardiac remodeling may help to design sex-specific pharmacological interventions.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Oscar Carretero ◽  
Xiao-Ping Yang ◽  
Pablo Nakagawa ◽  
Jiang Xu ◽  
...  

Elevated interleukin-4 (IL-4) levels are positively related to cardiac fibrosis in heart failure and hypertension. Using Balb/c exhibiting high circulating IL-4, Balb/c- Il4 tm2Nnt (IL-4 knockout with Balb/c background, IL-4 -/- ) and C57BL/6 mice, as well as cultured cardiac fibroblasts (CFs), we hypothesized that 1) high levels of IL-4 result in cardiac fibrosis, making the heart susceptible to angiotensin II (Ang II)-induced damage, and 2) IL-4 potently stimulates collagen production by CFs. Each strain (9- to 12-week old male) received vehicle or Ang II (1.4 mg/kg/day, s.c. via osmotic mini-pump) for 8 weeks. Cardiac fibrosis and function were determined by histology and echocardiography, respectively. Compared to C57BL/6, Balb/c mice had doubled interstitial collagen in the heart, enlarged left ventricle and decreased cardiac function along with elevated cardiac IL-4 protein (1.00±0.08 in C57BL/6 vs 2.61±0.46 in Balb/c, p <0.05); all those changes were significantly attenuated in IL-4 -/- (Table 1). Ang II further deteriorated cardiac fibrosis and dysfunction in Balb/c; these detrimental effects were attenuated in IL-4 -/- , although the three strains had a similar level of hypertension. In vitro study revealed that IL-4Rα was constitutively expressed in CFs (Western blot), and IL-4 potently stimulated collagen production by CFs (hydroxproline assay, from 18.89±0.85 to 38.81±3.61 μg/mg at 10 ng/ml, p <0.01). Our study demonstrates for the first time that IL-4, as a potent pro-fibrotic cytokine in the heart, contributes to cardiac fibrotic remodeling and dysfunction. Thus IL-4 may be a potential therapeutic target for cardiac fibrosis and dysfunction.


Sign in / Sign up

Export Citation Format

Share Document