scholarly journals Microglia Polarization in Alzheimer’s Disease: Mechanisms and a Potential Therapeutic Target

2021 ◽  
Vol 13 ◽  
Author(s):  
Qinqin Wang ◽  
Hongmei Yao ◽  
Wenyan Liu ◽  
Bailiu Ya ◽  
Hongju Cheng ◽  
...  

Neuroinflammation regulated by microglia is one of the important factors involved in the pathogenesis of Alzheimer’s disease (AD). Activated microglia exhibited phenotypes termed as M1 and M2 phenotypes separately. M1 microglia contribute to the development of inflammation via upregulating pro-inflammatory cytokines, while M2 microglia exert anti-inflammation effects through enhancing the expression of anti-inflammation factors. Moreover, M1 and M2 microglia could be mutually transformed under various conditions. Both M1 and M2 microglia are implicated in AD. Amyloid-β (Aβ) and hyperphosphorylated tau are two major components of AD pathological hallmarks, neuritic plaques, and neurofibrillary tangles. Both Aβ and hyperphosphorylated tau were involved in microglial activation and subsequent inflammation, which further contribute to neuronal and synaptic loss in AD. In this review, we summarized the roles of M1 and M2 microglia in AD and underlying mechanisms, which will provide an insight into the role of microglia in the pathogenesis of AD and highlight the therapeutic potential of modulating microglia.

2017 ◽  
Vol 214 (11) ◽  
pp. 3151-3169 ◽  
Author(s):  
Axel Montagne ◽  
Zhen Zhao ◽  
Berislav V. Zlokovic

The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.


2019 ◽  
Author(s):  
Dhanya Krishnan ◽  
Ramsekhar N Menon ◽  
Mathuranath PS ◽  
Srinivas Gopala

AbstractINTRODUCTIONDefective immune cell-mediated clearance of amyloid-beta (Aβ) and Aβ-associated inflammatory activation of immune cells are key contributors of Aβ accumulation and neurodegeneration in Alzheimer’s disease (AD), however, the underlying mechanisms remain elusive.METHODSDifferentiated THP-1 cells treated with Aβ and AD patient-derived macrophages were used as in-vitro model. The role of SHARPIN was analysed in differentiated THP-1 cells using siRNA-mediated knockdown followed by immunoblotting, ELISA, real-time PCR, immunoprecipitation and flow cytometry. Differentiated SHSY5Y cells were used to study inflammation-mediated apoptosis.RESULTSSHARPIN was found to regulate Aβ-phagocytosis and NLRP3 expression in THP-1 derived macrophages. Further, it was found to promote macrophage polarization to an M1 (pro-inflammatory) phenotype resulting in enhanced inflammation and associated neuronal death, demonstrated using in-vitro culture systems. SHARPIN expression by blood-derived macrophages was further found to be higher in the early stages of AD, which correlates with Aβ40/42 concentration in the plasma and age of the study subjects.DISCUSSIONThe novel protein, SHARPIN has been shown to play critical roles in regulation of Aβ-phagocytosis and inflammation in AD and the mechanism by which SHARPIN is activated by Aβ in macrophages has been elucidated.


2020 ◽  
Vol 21 (14) ◽  
pp. 4920
Author(s):  
Umar H. Iqbal ◽  
Emma Zeng ◽  
Giulio M. Pasinetti

The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer’s disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10–20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer’s disease.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 388
Author(s):  
Michael S. Wolfe

The membrane-embedded γ-secretase complex carries out hydrolysis within the lipid bilayer in proteolyzing nearly 150 different membrane protein substrates. Among these substrates, the amyloid precursor protein (APP) has been the most studied, as generation of aggregation-prone amyloid β-protein (Aβ) is a defining feature of Alzheimer’s disease (AD). Mutations in APP and in presenilin, the catalytic component of γ-secretase, cause familial AD, strong evidence for a pathogenic role of Aβ. Substrate-based chemical probes—synthetic peptides and peptidomimetics—have been critical to unraveling the complexity of γ-secretase, and small drug-like inhibitors and modulators of γ-secretase activity have been essential for exploring the potential of the protease as a therapeutic target for Alzheimer’s disease. Such chemical probes and therapeutic prototypes will be reviewed here, with concluding commentary on the future directions in the study of this biologically important protease complex and the translation of basic findings into therapeutics.


Author(s):  
Roger G. Biringer

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer’s Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2019 ◽  
Vol 18 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Xinxin Fu ◽  
Tingting Qin ◽  
Jiayu Yu ◽  
Jie Jiao ◽  
Zhanqiang Ma ◽  
...  

Background: Alzheimer’s disease is one of the most common neurodegenerative diseases in many modern societies. The core pathogenesis of Alzheimer’s disease includes the aggregation of hyperphosphorylated Tau and abnormal Amyloid-β generation. In addition, previous studies have shown that neuroinflammation is one of the pathogenesis of Alzheimer’s disease. Formononetin, an isoflavone compound extracted from Trifolium pratense L., has been found to have various properties including anti-obesity, anti-inflammation, and neuroprotective effects. But there are very few studies on the treatment of Alzheimer’s disease with Formononetin. Objective: The present study focused on the protective activities of Formononetin on a high-fat dietinduced cognitive decline and explored the underlying mechanisms. Methods: Mice were fed with HFD for 10 weeks and intragastric administrated daily with metformin (300 mg/kg) and Formononetin (20 and 40 mg/kg). Results: We found that Formononetin (20, 40 mg/kg) significantly attenuated the learning and memory deficits companied by weight improvement and decreased the levels of blood glucose, total cholesterol and triglyceride in high-fat diet-induced mice. Meanwhile, we observed high-fat diet significantly caused the Tau hyperphosphorylation in the hippocampus of mice, whereas Formononetin reversed this effect. Additionally, Formononetin markedly reduced the levels of inflammation cytokines IL-1β and TNF-α in high-fat diet-induced mice. The mechanism study showed that Formononetin suppressed the pro-inflammatory NF-κB signaling and enhanced the anti-inflammatory Nrf-2/HO-1 signaling, which might be related to the regulation of PGC-1α in the hippocampus of high-fat diet -induced mice. Conclusion: Taken together, our results showed that Formononetin could improve the cognitive function by inhibiting neuroinflammation, which is attributed to the regulation of PGC-1α pathway in HFD-induced mice.


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


Brain ◽  
2021 ◽  
Author(s):  
Eva Dávila-Bouziguet ◽  
Arnau Casòliba-Melich ◽  
Georgina Targa-Fabra ◽  
Lorena Galera-López ◽  
Andrés Ozaita ◽  
...  

Abstract Alzheimer’s disease comprises amyloid-β and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms, and cognitive deficits. Non-Demented with Alzheimer’s disease Neuropathology (NDAN) defines a novel clinical entity with amyloid-β and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of NDAN are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-β and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-β accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in NDAN. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document