scholarly journals Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation

2021 ◽  
Vol 15 ◽  
Author(s):  
Jacquelyn R. Dayton ◽  
Yinyu Yuan ◽  
Lisa P. Pacumio ◽  
Bryce G. Dorflinger ◽  
Samantha C. Yoo ◽  
...  

Considerable clinical evidence supports that increased blood–brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it’s contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB–/– mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB–/– mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB–/– mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB–/– and wild-type genotype. Host IL-20RB–/– mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB–/– mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.

Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2176-2183 ◽  
Author(s):  
Bianca Hemmeryckx ◽  
Rita van Bree ◽  
Berthe Van Hoef ◽  
Lisbeth Vercruysse ◽  
H. Roger Lijnen ◽  
...  

Pregnancy-induced metabolic changes are regulated by signals from an expanded adipose organ. Placental growth factor (PlGF), acting through vascular endothelial growth factor receptor-1, may be among those signals. There is a steep rise in circulating PlGF during normal pregnancy, which is repressed in gravidas who develop preeclampsia. PlGF-deficiency in mice impairs adipose vascularization and development. Here we studied young-adult PlGF-deficient (PlGF−/−) and wild-type mice on a high-fat diet in the nongravid state and at embryonic day (E) 13.5 or E18.5 of gestation. Litter size and weight were normal, but E18.5 placentas were smaller in PlGF−/− pregnancies. PlGF−/− mice showed altered intraadipose dynamics, with the following: 1) less blood vessels and fewer brown, uncoupling protein (UCP)-1-positive, adipocytes in white sc and perigonadal fat compartments and 2) white adipocyte hypertrophy. The mRNA expression of β3-adrenergic receptors, peroxisome proliferator-activated receptor-γ coactivator-1α, and UCP-1 was decreased accordingly. Moreover, PlGF−/− mice showed hyperinsulinemia. Pregnancy-associated changes were largely comparable in PlGF−/− and wild-type dams. They included expanded sc fat compartments and adipocyte hypertrophy, whereas adipose expression of key angiogenesis/adipogenesis (vascular endothelial growth factor receptor-1, peroxisome proliferator-activated receptor-γ2) and thermogenesis (β3-adrenergic receptors, peroxisome proliferator-activated receptor-γ coactivator-1α, and UCP-1) genes was down-regulated; circulating insulin levels gradually increased during pregnancy. In conclusion, reduced adipose vascularization in PlGF−/− mice impairs adaptive thermogenesis in favor of energy storage, thereby promoting insulin resistance and hyperinsulinemia. Pregnancy adds to these changes by PlGF-independent mechanisms. Disturbed intraadipose dynamics is a novel mechanism to explain metabolic changes in late pregnancy in general and preeclamptic pregnancy in particular.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


Development ◽  
2002 ◽  
Vol 129 (8) ◽  
pp. 1881-1892 ◽  
Author(s):  
Annette Damert ◽  
Lucile Miquerol ◽  
Marina Gertsenstein ◽  
Werner Risau ◽  
Andras Nagy

Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegflo. Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing ‘Vegf wild-type’ visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the ‘Vegf wild-type’ yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.


2007 ◽  
Vol 292 (1) ◽  
pp. H516-H521 ◽  
Author(s):  
David L. Basi ◽  
Neeta Adhikari ◽  
Ami Mariash ◽  
Qinglu Li ◽  
Esther Kao ◽  
...  

Redox factor-1 (Ref-1) is a multifunctional protein that regulates redox, DNA repair, and the response to cell stress. We previously demonstrated that Ref-1+/− mice exhibit a significantly reduced Ref-1 mRNA and protein levels within the vasculature, which are associated with increased oxidative stress. The goal of this study was to test the hypothesis that partial loss of Ref-1 altered the cellular response to vascular injury. Fourteen days after femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in Ref-1+/− mice compared with that in wild-type mice ( P < 0.01). Bromodeoxyuridine labeling and transferase-mediated dUTP nick-end labeling staining at 14 days did not differ in the Ref-1+/− mice. In vitro studies found no significant changes in either serum-induced proliferation or baseline apoptosis in Ref-1+/− vascular smooth muscle cells. Exposure to Fas ligand; however, did result in increased susceptibility of Ref-1+/− vascular smooth muscle cells to apoptosis ( P < 0.001). Ref-1+/− mice exhibited an increase in circulating baseline levels of IL-10, IL-1α, and VEGF compared with those in wild-type mice but a marked impairment in these pathways in response to injury. In sum, loss of a single allele of Ref-1 is sufficient to reduce intimal lesion formation and to alter circulating cytokine and growth factor expression.


2019 ◽  
Author(s):  
Kristina A.M. Arendt ◽  
Giannoula Ntaliarda ◽  
Vasileios Armenis ◽  
Danai Kati ◽  
Christin Henning ◽  
...  

ABSTRACTKRAS inhibitors perform inferior to other targeted drugs. To investigate a possible reason for this, we treated cancer cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom vectors. We show that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2/interleukin-1β signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in Ccr2 and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and predicted poor survival. Hence the findings support that in vitro systems are suboptimal for anti-KRAS drug screens, and suggest that interleukin-1β blockade might be specific for KRAS-mutant cancers.


2020 ◽  
Author(s):  
Bhavnita Soni ◽  
Shailza Singh

AbstractMacrophage phenotype plays a crucial role in the pathogenesis of Leishmanial infection. Pro-inflammatory cytokines are the key regulators that eliminate the infection induced by Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Suppressor of cytokine signaling (SOCS) is a well-known negative feedback regulator of JAK/STAT pathway. However, change in expression levels of SOCS in correlation with the establishment of infection is not well understood. Mathematical modeling of IL6 signaling pathway have helped identified the role of SOCS1 in establishment of infection. Furthermore, the ratio of SOCS1 and SOCS3 has been quantified both in silico as well as in vitro, indicating an immune axis which governs the macrophage phenotype during L. major infection. The ability of SOCS1 protein to inhibit the JAK/STAT1 signaling pathway and thereby decreasing pro-inflammatory cytokine expression makes it a strong candidate for therapeutic intervention. Using synthetic biology approaches, peptide based immuno-regulatory circuit have been designed to target the activity of SOCS1 which can restore pro-inflammatory cytokine expression during infection.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3727-3736 ◽  
Author(s):  
R. Hays ◽  
G.B. Gibori ◽  
A. Bejsovec

wingless (wg) and its vertebrate homologues, the Wnt genes, play critical roles in the generation of embryonic pattern. In the developing Drosophila epidermis, wg is expressed in a single row of cells in each segment, but it influences cell identities in all rows of epidermal cells in the 10- to 12-cell-wide segment. Wg signaling promotes specification of two distinct aspects of the wild-type intrasegmental pattern: the diversity of denticle types present in the anterior denticle belt and the smooth or naked cuticle constituting the posterior surface of the segment. We have manipulated the expression of wild-type and mutant wg transgenes to explore the mechanism by which a single secreted signaling molecule can promote these distinctly different cell fates. We present evidence consistent with the idea that naked cuticle cell fate is specified by a cellular pathway distinct from the denticle diversity-generating pathway. Since these pathways are differentially activated by mutant Wg ligands, we propose that at least two discrete classes of receptor for Wg may exist, each transducing a different cellular response. We also find that broad Wg protein distribution across many cell diameters is required for the generation of denticle diversity, suggesting that intercellular transport of the Wg protein is an essential feature of pattern formation within the epidermal epithelium. Finally, we demonstrate that an 85 amino acid region not conserved in vertebrate Wnts is dispensable for Wg function and we discuss structural features of the Wingless protein required for its distinct biological activities.


1998 ◽  
Vol 84 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Vincenzo Chiarugi ◽  
Lucia Magnelli ◽  
Marina Cinelli

Wild-type p53 is involved in cellular response to DNA damage including cell cycle control, DNA repair and activation of apoptosis. Accumulation of p53 protein following DNA damage may initiate the apoptotic process, resulting in cell death. DNA damage induced by radiation is an example of apoptotic stimulus involving p53. Regulation of apoptosis by p53 can occur through transcriptional regulation of pro-apoptotic (e.g. bax) and anti-apoptotic (e.g. bel-2) factors. Although wild-type p53 usually sensitizes cells to radiation therapy, p53 mutations have a variable effect on radiation response. For example p53 mutations in bone or breast tumors have been found to be associated with resistance to chemotherapeutic drugs or ionizing radiation. Mutated p53 has has been reported to increase sensitivity to radiation and drugs in colorectal and bladder tumors. The present brief commentary tries to find an explanation at molecular level of these conflicting results.


Sign in / Sign up

Export Citation Format

Share Document