scholarly journals Post-COVID Opsoclonus Myoclonus Syndrome: A Case Report From Pakistan

2021 ◽  
Vol 12 ◽  
Author(s):  
Hira Ishaq ◽  
Talha Durrani ◽  
Zainab Umar ◽  
Nemat Khan ◽  
Pamela McCombe ◽  
...  

Background: Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory distress syndrome–coronavirus-2 (SARS-CoV-2), is primarily a respiratory infection but has been recently associated with a variety of neurological symptoms. We present herewith a COVID-19 case manifesting as opsoclonus-myoclonus syndrome (OMS), a rare neurological disorder.Case Presentation: A 63-year-old male diagnosed with COVID-19 infection developed behavioral changes, confusion, and insomnia followed by reduced mobility and abnormal eye movements within 48 h of recovery from respiratory symptoms associated with COVID-19. On examination, he had rapid, chaotic, involuntary saccadic, multidirectional eye movements (opsoclonus), and limb myoclonus together with truncal ataxia. CSF analysis, MRI of the brain, and screening for anti-neuronal and encephalitis related antibodies were negative. Extensive testing revealed no underlying malignancy. The patient was successfully treated with intravenous immunoglobulin (IVIG) with complete resolution of symptoms within 4 weeks of treatment.Conclusion: COVID-19 infection can be associated with the manifestation of opsoclonus myoclonus syndrome, a rare neurological disorder that can be treated with IVIG if not responsive to corticosteroids.

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098492
Author(s):  
Yan-Feng Zhang ◽  
Yi-Zhu Wang ◽  
Xiao-Sheng Hao ◽  
Hong-Bo Zhang ◽  
Jiang-Tao Wang ◽  
...  

Background Paroxysmal tonic upgaze (PTU) is an infantile-onset paroxysmal neurological disorder that is characterized by episodes of sustained conjugate upward eye deviation. The paroxysmal abnormal eye movements need to be differentiated from seizures. We report a case of PTU with occipital discharge on electroencephalography (EEG), which made the diagnosis more complicated. Case presentation A 6-month-old girl presented with paroxysmal upward deviation or left strabismus of the eyes, with a bowed head, lowered jaw, raised eyebrows, closed lips, and slight grin. Each episode lasted for a few seconds, and episodes occurred multiple times per day. EEG showed spike waves in the right occipital region, and the girl was initially misdiagnosed with epilepsy. After further analysis using video EEG, we corrected her diagnosis as PTU and stopped the administration of an antiepileptic drug. Conclusion PTU accompanied by discharge on EEG may lead to a misdiagnosis. Video EEG monitoring, and especially the analysis of EEG traces synchronized with attacks, can provide evidence to distinguish between seizures and non-epileptic events.


2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Thomas Loeb ◽  
Anna Ozguler ◽  
Geraldine Baer ◽  
Michel Baer

Abstract Background Hypoglycemia usually includes various neurological symptoms, which are the consequence of neuroglycopenia. When it is severe, it is associated with altered mental status, even coma. Case presentation We report the case of a patient with severe hypoglycemia, completely asymptomatic, due to the increase of lactate production in response to tissue hypoperfusion following a hemorrhagic shock. This illustrates that lactate can substitute glucose as an energy substrate for the brain. It is also a reminder that this metabolite, despite its bad reputation maintained by its role as a marker of severity in critical care patients, has a fundamental role in our metabolism. Conclusions Following the example of the “happy hypoxemia” recently reported in the literature describing asymptomatic hypoxemia in COVID-19 patients, we describe a case of “happy hypoglycemia.”


2021 ◽  
Vol 22 (7) ◽  
pp. 3330
Author(s):  
Mehdi Eshraghi ◽  
Aida Adlimoghaddam ◽  
Amir Mahmoodzadeh ◽  
Farzaneh Sharifzad ◽  
Hamed Yasavoli-Sharahi ◽  
...  

Alzheimer’s disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including am-yloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Felipe Ornell ◽  
Samira S. Valvassori ◽  
Amanda V. Steckert ◽  
Pedro F. Deroza ◽  
Wilson R. Resende ◽  
...  

The effects of modafinil (MD) on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg). Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses.


Author(s):  
Renjie Wang ◽  
Yankun Shao ◽  
Lei Xu

Introduction: The medulla oblongata is the lowest segment of the brain stem, located adjacent to the spinal cord, with a complex anatomical structure. Thus, a small injury to the medulla oblongata can show complex clinical manifestations. Case Presentation: A patient experienced dysesthesia, which manifested as numbness in her right lower limb and decreased temperature sense, and dizziness 20 days before admission. The numbness worsened 1 week before admission, reaching the right thoracic (T) 12 dermatomes. Her thermoception below the T12 dermatomes decreased, and the degree of dizziness increased, accompanied by nausea and vomiting. Magnetic resonance imaging (MRI) of the neck, chest, and abdomen performed at a local hospital showed no abnormalities. MRI of the brain was performed after admission. One week after admission, she experienced a severe headache in the upper left periorbital area. The numbness extended to T4, and thermoception decreased below T4. Diagnosis: Lateral medullary infarction. Interventions: Anti-platelet aggregation and mitochondrial nutritional therapies were performed along with treatments for improving circulation and establishing collateral circulation. Outcomes: The intensity of limb numbness decreased, and the symptoms of headache and dizziness resolved. Conclusion: Lesions leading to segmental sensory disorders can occur in the medulla oblongata. Ipsilateral headaches with contralateral segmental paresthesia can be a specific sign of lateral medullary infarction.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Alessio Molfino ◽  
Gianfranco Gioia ◽  
Filippo Rossi Fanelli ◽  
Alessandro Laviano

Inflammation characterizes the course of acute and chronic diseases and is largely responsible for the metabolic and behavioral changes occurring during the clinical journey of patients. Robust data indicate that, during cancer, functional modifications within brain areas regulating energy homeostasis contribute to the onset of anorexia, reduced food intake, and increased catabolism of muscle mass and adipose tissue. In particular, functional changes are associated with increased hypothalamic concentration of proinflammatory cytokines, which suggests that neuroinflammation may represent the adaptive response of the brain to peripheral challenges, including tumor growth. Within this conceptual framework, the vagus nerve appears to be involved in conveying alert signals to the hypothalamus, whereas hypothalamic serotonin appears to contribute to triggering catabolic signals.


2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


2014 ◽  
Vol 8 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Jéssica Natuline Ianof ◽  
Fabio Rios Freire ◽  
Vanessa Tomé Gonçalves Calado ◽  
Juliana Rhein Lacerda ◽  
Fernanda Coelho ◽  
...  

ABSTRACT Traumatic brain injury (TBI) is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such as American football, rugby, soccer, boxing, basketball and hockey are associated with a relatively high prevalence of concussion. Various factors may be associated with a greater risk of sport-related concussion, such as age, sex, sport played, level of sport played and equipment used. Physical complaints (headache, fatigue, dizziness), behavioral changes (depression, anxiety, irritability) and cognitive impairment are very common after a concussion. The risk of premature return to activities includes the prolongation of post-concussive symptoms and increased risk of concussion recurrence.


2021 ◽  
Author(s):  
Kristen K Baumann ◽  
Wei-Shan Sandy Liang ◽  
Daniel V Quaranta ◽  
Miranda L Wilson ◽  
Helina S Asrat ◽  
...  

Ozone (O3) is an air pollutant which primarily damages the lungs, but growing evidence supports that O3 exposure can also affect the brain. Serum amyloid A (SAA) and kynurenine have been identified as circulating factors that are upregulated by O3, and both can contribute to depressive-like behaviors in mice. However, little is known about the relations of O3 exposure to sickness and depressive-like behaviors in experimental settings. In this study, we evaluated O3 dose-, time- and sex- dependent changes in circulating SAA in context of pulmonary inflammation and damage, sickness and depressive-like behavioral changes, and systemic changes in kynurenine and indoleamine 2,3-dioxygenase (IDO), an enzyme that regulates kynurenine production and contributes to inflammation-induced depressive-like behaviors. Our results in Balb/c and CD-1 mice showed that 3ppm O3, but not 2 or 1ppm O3, caused elevations in serum SAA and pulmonary neutrophils, and these responses resolved by 48 hours. Sickness and depressive-like behaviors were observed at all O3 doses (1-3ppm), although the detection of certain behavioral changes varied by dose. We also found that Ido1 mRNA expression was increased in the brain and spleen 24 hours after 3ppm O3, and that kynurenine was increased in blood. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors which may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. We also present evidence that the IDO/kynurenine pathway is upregulated systemically following an acute exposure to O3 in mice.


Sign in / Sign up

Export Citation Format

Share Document