scholarly journals Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging

2021 ◽  
Vol 15 ◽  
Author(s):  
Daria Peleg-Raibstein

Obesity has long been identified as a global epidemic with major health implications such as diabetes and cardiovascular disease. Maternal overnutrition leads to significant health issues in industrial countries and is one of the risk factors for the development of obesity and related disorders in the progeny. The wide accessibility of junk food in recent years is one of the major causes of obesity, as it is low in nutrient content and usually high in salt, sugar, fat, and calories. An excess of nutrients during fetal life not only has immediate effects on the fetus, including increased growth and fat deposition in utero, but also has long-term health consequences. Based on human studies, it is difficult to discern between genetic and environmental contributions to the risk of disease in future generations. Consequently, animal models are essential for studying the impact of maternal overnutrition on the developing offspring. Recently, animal models provided some insight into the physiological mechanisms that underlie developmental programming. Most of the studies employed thus far have focused only on obesity and metabolic dysfunctions in the offspring. These studies have advanced our understanding of how maternal overnutrition in the form of high-fat diet exposure can lead to an increased risk of obesity in the offspring, but many questions remain open. How maternal overnutrition may increase the risk of developing brain pathology such as cognitive disabilities in the offspring and increase the risk to develop metabolic disorders later in life? Further, does maternal overnutrition exacerbate cognitive- and cardio-metabolic aging in the offspring?

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Li ◽  
D. M. Sloboda ◽  
M. H. Vickers

The incidence of obesity and overweight has reached epidemic proportions in the developed world as well as in those countries transitioning to first world economies, and this represents a major global health problem. Concern is rising over the rapid increases in childhood obesity and metabolic disease that will translate into later adult obesity. Although an obesogenic nutritional environment and increasingly sedentary lifestyle contribute to our risk of developing obesity, a growing body of evidence links early life nutritional adversity to the development of long-term metabolic disorders. In particular, the increasing prevalence of maternal obesity and excess maternal weight gain has been associated with a heightened risk of obesity development in offspring in addition to an increased risk of pregnancy-related complications. The mechanisms that link maternal obesity to obesity in offspring and the level of gene-environment interactions are not well understood, but the early life environment may represent a critical window for which intervention strategies could be developed to curb the current obesity epidemic. This paper will discuss the various animal models of maternal overnutrition and their importance in our understanding of the mechanisms underlying altered obesity risk in offspring.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 547
Author(s):  
Mi Sook Jung ◽  
Eunyoung Chung

This study examined the association between television (TV) viewing and cognitive dysfunction in elderly Koreans. Among participants of the 2014 National Survey of Older Koreans, 9644 were considered in this study. To better identify the association between two factors, propensity score (PS) matching with exact method was used. Finally, 168 viewers and non-viewers each were selected based on estimated PS on key variables and eliminating double matches. Multivariate logistic regression analysis was performed when controlling for possible covariates. Viewers were more likely to have cognitive dysfunction than non-viewers, with significant differences in most covariates. After correcting confounding effects of these covariates with PS matching, TV viewing was found to be a significant risk factor of cognitive dysfunction, along with absence of diagnosed hypertension and non-participation in physical leisure activities. TV viewing might be associated with increased risk of cognitive dysfunction in later life. Appropriate education and strategies to minimize TV viewing among older adults should be established to contribute to attenuating cognitive aging. More interventional studies can help older adults, caregivers, and healthcare professionals explore the cognitively beneficial alternatives to TV use considering the impact of socioeconomic factors of selecting TV viewing as a preferred leisure activity.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Liyuan Zhou ◽  
Xinhua Xiao

Obesity is considered a global epidemic. Specifically, obesity during pregnancy programs an increased risk of the offspring developing metabolic disorders in addition to the adverse effects on the mother per se. Large numbers of human and animal studies have demonstrated that the gut microbiota plays a pivotal role in obesity and metabolic diseases. Similarly, maternal obesity during pregnancy is associated with alterations in the composition and diversity of the intestine microbial community. Recently, the microbiota in the placenta, amniotic fluid, and meconium in healthy gestations has been investigated, and the results supported the “in utero colonization hypothesis” and challenged the traditional “sterile womb” that has been acknowledged worldwide for more than a century. Thus, the offspring microbiota, which is crucial for the immune and metabolic function and further health in the offspring, might be established prior to birth. As a detrimental intrauterine environment, maternal obesity influences the microbial colonization and increases the risk of metabolic diseases in offspring. This review discusses the role of the microbiota in the impact of maternal obesity during pregnancy on offspring metabolism and further analyzes related probiotic or prebiotic interventions to prevent and treat obesity and metabolic diseases.


Author(s):  
Beverly S. Muhlhausler ◽  
Jessica R. Gugusheff ◽  
Zhi Yi Ong ◽  
Mini A. Vithayathil

AbstractA substantial body of literature has demonstrated that the nutritional environment an individual experiences before birth or in early infancy is a key determinant of their health outcomes across the life course. This concept, the developmental origins of health and disease (DOHaD) hypothesis, was initially focused on the adverse consequences of exposure to a suboptimal nutrient supply and provided evidence that maternal undernutrition, fetal growth restriction, and low birth weight were associated with heightened risk of central adiposity, insulin resistance, and cardiovascular disease. More recently, the epidemic rise in the incidence of maternal obesity has seen the attention of the DOHaD field turn toward identifying the impact on the offspring of exposure to an excess nutrient supply in early life. The association between maternal obesity and increased risk of obesity in the offspring has been documented in human populations worldwide, and animal models have provided critical insights into the biological mechanisms that drive this relationship. This review will discuss the important roles that programming of the adipocyte and programming of the central neural networks which control appetite and reward play in the early life programming of metabolic disease by maternal overnutrition. It will also highlight the important research gaps and challenges that remain to be addressed and provide a personal perspective on where the field should be heading in the coming 5–10 years.


2015 ◽  
Vol 7 (1) ◽  
pp. 15-24 ◽  
Author(s):  
J. G. Wallace ◽  
W. Gohir ◽  
D. M. Sloboda

The rise in the occurrence of obesity to epidemic proportions has made it a global concern. Great difficulty has been experienced in efforts to control this growing problem with lifestyle interventions. Thus, attention has been directed to understanding the events of one of the most critical periods of development, perinatal life. Early life adversity driven by maternal obesity has been associated with an increased risk of metabolic disease and obesity in the offspring later in life. Although a mechanistic link explaining the relationship between maternal and offspring obesity is still under investigation, the gut microbiota has come forth as a new factor that may play a role modulating metabolic function of both the mother and the offspring. Emerging evidence suggests that the gut microbiota plays a much larger role in mediating the risk of developing non-communicable disease, including obesity and metabolic dysfunction in adulthood. With the observation that the early life colonization of the neonatal and postnatal gut is mediated by the perinatal environment, the number of studies investigating early life gut microbial establishment continues to grow. This paper will review early life gut colonization in experimental animal models, concentrating on the role of the early life environment in offspring gut colonization and the ability of the gut microbiota to dictate risk of disease later in life.


Author(s):  
Jiayu Ye ◽  
Natasha Haskey ◽  
Hansika Dadlani ◽  
Hatem M Zubaidi ◽  
Jacqueline A Barnett ◽  
...  

Patients with inflammatory bowel disease (IBD) are at increased risk for under recognized metabolic co-morbidities. Chronic intestinal inflammation in IBD along with changes to the gut microbiome leads to broader systemic effects. Despite the existence of multiple animal models to study colitis, limited studies have examined the metabolic abnormalities associated with these models. In this study, a spontaneous model of colitis (mucin 2 knock-out mouse, Muc2-/-) was used to investigate the impact of intestinal disease on metabolic dysfunction. Prior to onset of severe colitis, such as rectal prolapse, Muc2-/- mice exhibited impaired glucose clearance. Defects were noted in the insulin signaling pathway corresponding with upregulated genes in lipid utilization pathways, increased mitochondrial number and peroxisome proliferator-activated coactivator 1-alpha (PGC-1 alpha), a transcription factor central to energy metabolism regulation. Parallel to these metabolic alterations, Muc2-/- mice exhibited systemic inflammation and bacteremia. We further characterize the dysbiotic microbiome's predicted functional categories given its contributing role to the colitic phenotype in the Muc2-/- mice. In addition to less butyrate levels, we show an increased predisposition to lipid metabolism and lipid biosynthesis pathways in the microbiome associated with the host's altered metabolic state. This study establishes the Muc2-/- mouse model that develops spontaneous colitis, as an ideal model for studying early co-morbid metabolic dysfunction. Clarification of the underlying etiology of two phenotypes in this model could unravel important clues regarding the treatment of metabolic comorbidities during colitis.


2015 ◽  
Vol 36 (2) ◽  
pp. 194-213 ◽  
Author(s):  
Matthew P. Gilbert ◽  
Richard E. Pratley

Abstract Patients with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fractures despite increased body weight and normal or higher bone mineral density. The mechanisms by which T2DM increases skeletal fragility are unclear. It is likely that a combination of factors, including a greater risk of falling, regional osteopenia, and impaired bone quality, contributes to the increased fracture risk. Drugs for the treatment of T2DM may also impact on the risk for fractures. For example, thiazolidinediones accelerate bone loss and increase the risk of fractures, particularly in older women. In contrast, metformin and sulfonylureas do not appear to have a negative effect on bone health and may, in fact, protect against fragility fracture. Animal models indicate a potential role for incretin hormones in bone metabolism, but there are only limited data on the impact of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 agonists on bone health in humans. Animal models also have demonstrated a role for amylin in bone metabolism, but clinical trials in patients with type 1 diabetes with an amylin analog (pramlintide) have not shown a significant impact on bone metabolism. The effects of insulin treatment on fracture risk are inconsistent with some studies showing an increased risk and others showing no effect. Finally, although there is limited information on the latest class of medications for the treatment of T2DM, the sodium-glucose co-transporter-2 inhibitors, these drugs do not seem to increase fracture risk. Because diabetes is an increasingly common chronic condition that can affect patients for many decades, further research into the effects of agents for the treatment of T2DM on bone metabolism is warranted. In this review, the physiological mechanisms and clinical impact of diabetes treatments on bone health and fracture risk in patients with T2DM are described.


2017 ◽  
Vol 87 (1-2) ◽  
pp. 10-16 ◽  
Author(s):  
Salah Gariballa ◽  
Awad Alessa

Abstract. Background: ill health may lead to poor nutrition and poor nutrition to ill health, so identifying priorities for management still remains a challenge. The aim of this report is to present data on the impact of plasma zinc (Zn) depletion on important health outcomes after adjusting for other poor prognostic indicators in hospitalised patients. Methods: Hospitalised acutely ill older patients who were part of a large randomised controlled trial had their nutritional status assessed using anthropometric, hematological and biochemical data. Plasma Zn concentrations were measured at baseline, 6 weeks and at 6 months using inductively- coupled plasma spectroscopy method. Other clinical outcome measures of health were also measured. Results: A total of 345 patients assessed at baseline, 133 at 6 weeks and 163 at 6 months. At baseline 254 (74%) patients had a plasma Zn concentration below 10.71 μmol/L indicating biochemical depletion. The figures at 6 weeks and 6 months were 86 (65%) and 114 (70%) patients respectively. After adjusting for age, co-morbidity, nutritional status and tissue inflammation measured using CRP, only muscle mass and serum albumin showed significant and independent effects on plasma Zn concentrations. The risk of non-elective readmission in the 6-months follow up period was significantly lower in patients with normal Zn concentrations compared with those diagnosed with Zn depletion (adjusted hazard ratio 0.62 (95% CI: 0.38 to 0.99), p = 0.047. Conclusions: Zn depletion is common and associated with increased risk of readmission in acutely-ill older patients, however, the influence of underlying comorbidity on these results can not excluded.


VASA ◽  
2015 ◽  
Vol 44 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Lea Weingarz ◽  
Marc Schindewolf ◽  
Jan Schwonberg ◽  
Carola Hecking ◽  
Zsuzsanna Wolf ◽  
...  

Abstract. Background: Whether screening for thrombophilia is useful for patients after a first episode of venous thromboembolism (VTE) is a controversial issue. However, the impact of thrombophilia on the risk of recurrence may vary depending on the patient’s age at the time of the first VTE. Patients and methods: Of 1221 VTE patients (42 % males) registered in the MAISTHRO (MAin-ISar-THROmbosis) registry, 261 experienced VTE recurrence during a 5-year follow-up after the discontinuation of anticoagulant therapy. Results: Thrombophilia was more common among patients with VTE recurrence than those without (58.6 % vs. 50.3 %; p = 0.017). Stratifying patients by the age at the time of their initial VTE, Cox proportional hazards analyses adjusted for age, sex and the presence or absence of established risk factors revealed a heterozygous prothrombin (PT) G20210A mutation (hazard ratio (HR) 2.65; 95 %-confidence interval (CI) 1.71 - 4.12; p < 0.001), homozygosity/double heterozygosity for the factor V Leiden and/or PT mutation (HR 2.35; 95 %-CI 1.09 - 5.07, p = 0.030), and an antithrombin deficiency (HR 2.12; 95 %-CI 1.12 - 4.10; p = 0.021) to predict recurrent VTE in patients aged 40 years or older, whereas lupus anticoagulants (HR 3.05; 95%-CI 1.40 - 6.66; p = 0.005) increased the risk of recurrence in younger patients. Subgroup analyses revealed an increased risk of recurrence for a heterozygous factor V Leiden mutation only in young females without hormonal treatment whereas the predictive value of a heterozygous PT mutation was restricted to males over the age of 40 years. Conclusions: Our data do not support a preference of younger patients for thrombophilia testing after a first venous thromboembolic event.


2012 ◽  
Vol 7 (1) ◽  
pp. 37
Author(s):  
Donald E Cutlip ◽  

Coronary artery disease in patients with diabetes is frequently a diffuse process with multivessel involvement and is associated with increased risk for myocardial infarction and death. The role of percutaneous coronary intervention (PCI) versus coronary artery bypass grafting (CABG) in patients with diabetes and multivessel disease who require revascularisation has been debated and remains uncertain. The debate has been continued mainly because of the question to what degree an increased risk for in-stent restenosis among patients with diabetes contributes to other late adverse outcomes. This article reviews outcomes from early trials of balloon angioplasty versus CABG through later trials of bare-metal stents versus CABG and more recent data with drug-eluting stents as the comparator. Although not all studies have been powered to show statistical significance, the results have been generally consistent with a mortality benefit for CABG versus PCI, despite differential risks for restenosis with the various PCI approaches. The review also considers the impact of mammary artery grafting of the left anterior descending artery and individual case selection on these results, and proposes an algorithm for selection of patients in whom PCI remains a reasonable strategy.


Sign in / Sign up

Export Citation Format

Share Document