scholarly journals Multiscale Computational Model Reveals Nerve Response in a Mouse Model for Temporal Interference Brain Stimulation

2021 ◽  
Vol 15 ◽  
Author(s):  
Jose Gomez-Tames ◽  
Akihiro Asai ◽  
Akimasa Hirata

There has been a growing interest in the non-invasive stimulation of specific brain tissues, while reducing unintended stimulation in surrounding regions, for the medical treatment of brain disorders. Traditional methods for non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS), can stimulate brain regions, but they also simultaneously stimulate the brain and non-brain regions that lie between the target and the stimulation site of the source. Temporal interference (TI) stimulation has been suggested to selectively stimulate brain regions by superposing two alternating currents with slightly different frequencies injected through electrodes attached to the scalp. Previous studies have reported promising results for TI applied to the motor area in mice, but the mechanisms are yet to be clarified. As computational techniques can help reveal different aspects of TI, in this study, we computationally investigated TI stimulation using a multiscale model that computes the generated interference current pattern effects in a neural cortical model of a mouse head. The results indicated that the threshold increased with the carrier frequency and that the beat frequency did not influence the threshold. It was also found that the intensity ratio between the alternating currents changed the location of the responding nerve, which is in agreement with previous experiments. Moreover, particular characteristics of the envelope were investigated to predict the stimulation region intuitively. It was found that regions with high modulation depth (| maximum| − | minimum| values of the envelope) and low minimum envelope (near zero) corresponded with the activation region obtained via neural computation.

2019 ◽  
Vol 238 (1) ◽  
pp. 1-16
Author(s):  
Zaira Cattaneo

AbstractDuring the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. Here, I review studies that have employed transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to investigate neurocognitive mechanisms mediating visual aesthetic appreciation for different stimuli categories (faces, bodies, paintings). The review first considers studies that have assessed the possible causal contribution of cortical regions in mediating aesthetic appreciation along the visual ventral and dorsal pathways (i.e., the extrastriate body area, the motion-sensitive region V5/MT+ , the lateral occipital complex and the posterior parietal cortex). It then considers TMS and tDCS studies that have targeted premotor and motor regions, as well as other areas involved in body and facial expression processing (such as the superior temporal sulcus and the somatosensory cortex) to assess their role in aesthetic evaluation. Finally, it discusses studies that have targeted medial and dorsolateral prefrontal regions leading to significant changes in aesthetic appreciation for both biological stimuli (faces and bodies) and artworks. Possible mechanisms mediating stimulation effects on aesthetic judgments are discussed. A final section considers both methodological limitations of the reviewed studies (including levels of statistical power and the need for further replication) and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.


Author(s):  
Simone Rossi ◽  
Emiliano Santarnecchi ◽  
Gaetano Valenza ◽  
Monica Ulivelli

Neuromodulation refers to invasive, minimally invasive or non-invasive techniques to stimulate discrete cortical or subcortical brain regions with therapeutic purposes in otherwise intractable patients: for example, thousands of advanced Parkinsonian patients, as well as patients with tremor or dystonia, benefited by deep brain stimulation (DBS) procedures (neural targets: basal ganglia nuclei). A new era for DBS is currently opening for patients with drug-resistant depression, obsessive-compulsive disorders, severe epilepsy, migraine and chronic pain (neural targets: basal ganglia and other subcortical nuclei or associative fibres). Vagal nerve stimulation (VNS) has shown clinical benefits in patients with pharmacoresistant epilepsy and depression. Non-invasive brain stimulation neuromodulatory techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are also being increasingly investigated for their therapeutic potential in several neurological and psychiatric disorders. In this review, we first address the most common neural targets of each of the mentioned brain stimulation techniques, and the known mechanisms of their neuromodulatory action on stimulated brain networks. Then, we discuss how DBS, VNS, rTMS and tDCS could impact on the function of brainstem centres controlling vital functions, critically reviewing their acute and long-term effects on brain sympathetic outflow controlling heart function and blood pressure. Finally, as there is clear experimental evidence in animals that brain stimulation can affect autonomic and heart functions, we will try to give a critical perspective on how it may enhance our understanding of the cortical/subcortical mechanisms of autonomic cardiovascular regulation, and also if it might find a place among therapeutic opportunities in patients with otherwise intractable autonomic dysfunctions.


2019 ◽  
Author(s):  
Gabriel Castrillon ◽  
Nico Sollmann ◽  
Katarzyna Kurcyus ◽  
Adeel Razi ◽  
Sandro M. Krieg ◽  
...  

AbstractNon-invasive brain stimulation reliably modulates brain activity and symptoms of neuropsychiatric disorders. However, stimulation effects substantially vary across individuals and brain regions. We combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neuronal basis of inter-individual and inter-areal differences after TMS. We found that stimulating sensory and cognitive areas yielded fundamentally heterogeneous effects. Stimulation of occipital cortex enhanced brain-wide functional connectivity and biophysical modeling identified increased local inhibition and enhanced forward-signaling after TMS. Conversely, frontal stimulation decreased functional connectivity, associated with local disinhibition and disruptions of both feedforward and feedback connections. Finally, we identified brain-wide functional integration as a predictive marker for these heterogeneous stimulation effects in individual subjects. Together, our study suggests that modeling of local and global signaling parameters of a target area will improve the specificity of non-invasive brain stimulation for research and clinical applications.


Author(s):  
Pushpinder Walia ◽  
Abhishek Ghosh ◽  
Shubhmohan Singh ◽  
Anirban Dutta

Background: Maladaptive neuroplasticity related learned response in substance use disorder (SUD) can be ameliorated using non-invasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation. Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on competing neurobehavioral decision systems model. Next objective was to conduct computational simulation of NIBS of cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD) related dysfunctional “cue-reactivity” – a closely related construct of “craving” that is a core symptom. Our third objective was to test the feasibility of our neuroimaging guided rational NIBS approach in healthy humans. Methods: “Cue-reactivity” can be measured using behavioral paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG), metrics of sensorimotor gating. Therefore, we conducted computational simulation of NIBS, including transcranial direct current stimulation(tDCS) and transcranial alternating current stimulation(tACS) of the cerebellar cortex and deep cerebellar nuclei(DCN), of the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational neuroimaging guided NIBS approach for cerebellar lobule (VII) and prefrontal cortex based on healthy human study. Results: Simulation study of cerebellar tDCS induced gamma oscillations in the cerebral cortex while tTIS induced gamma-to-beta frequency shift. Experimental fNIRS study found that 2mA cerebellar tDCS evoked similar oxyhemoglobin(HbO) response in-the-range of 5x10-6M across cerebellum and PFC brain regions (=0.01); however, infra-slow (0.01–0.10 Hz) prefrontal cortex HbO driven(phase-amplitude-coupling, PAC) 4Hz, ±2mA (max.) cerebellar tACS evoked HbO in-the-range of 10-7M that was statistically different (=0.01) across those brain regions. Conclusion: Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC as well as fNIRS-driven ctACS at 4Hz that may facilitate cerebellar cognitive function via the frontoparietal network. Future work needs to combine fNIRS with EEG for multi-modal imaging.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zonghao Xin ◽  
Akihiro Kuwahata ◽  
Shuang Liu ◽  
Masaki Sekino

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that has been clinically applied for neural modulation. Conventional TMS systems are restricted by the trade-off between depth penetration and the focality of the induced electric field. In this study, we integrated the concept of temporal interference (TI) stimulation, which has been demonstrated as a non-invasive deep-brain stimulation method, with magnetic stimulation in a four-coil configuration. The attenuation depth and spread of the electric field were obtained by performing numerical simulation. Consequently, the proposed temporally interfered magnetic stimulation scheme was demonstrated to be capable of stimulating deeper regions of the brain model while maintaining a relatively narrow spread of the electric field, in comparison to conventional TMS systems. These results demonstrate that TI magnetic stimulation could be a potential candidate to recruit brain regions underneath the cortex. Additionally, by controlling the geometry of the coil array, an analogous relationship between the field depth and focality was observed, in the case of the newly proposed method. The major limitations of the methods, however, would be the considerable intensity and frequency of the input current, followed by the frustration in the thermal management of the hardware.


Author(s):  
Zaira Cattaneo

Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), are largely employed in cognitive neuroscience to investigate the brain–behavior relationship. During the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. This chapter provides a synthetic description of mechanisms of actions of TMS and different types of tES, and reviews recent NIBS studies that have shed light on the neural underpinning of aesthetic evaluation of (visual) artworks. The chapter also considers methodological limitations of the reviewed studies and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.


2022 ◽  
Author(s):  
Adam Khalifa ◽  
Seyed Mahdi Abrishami ◽  
Mohsen Zaeimbashi ◽  
Alexander D. Tang ◽  
Brian Coughlin ◽  
...  

Non-invasive stimulation of deep brain regions has been a major goal for neuroscience and neuromodulation in the past three decades. Transcranial magnetic stimulation (TMS), for instance, cannot target deep regions in the brain without activating the overlying tissues and has a poor spatial resolution. In this manuscript, we propose a new concept that relies on the temporal interference of two high-frequency magnetic fields generated by two electromagnetic solenoids. To illustrate the concept, custom solenoids were fabricated and optimized to generate temporal interfering electric fields for rodent brain stimulation. C-Fos expression was used to track neuronal activation. C-Fos expression was not present in regions impacted by only one high-frequency magnetic field indicating ineffective recruitment of neural activity in non-target regions. In contrast, regions impacted by two fields that interfere to create a low-frequency envelope display a strong increase in c-Fos expression. Therefore, this magnetic temporal interference solenoid-based system provides a framework to perform further stimulation studies that would investigate the advantages it could bring over conventional TMS systems.


2021 ◽  
pp. 1-17
Author(s):  
Camila Beatriz da Silva Machado ◽  
Letícia Maria da Silva ◽  
Alessandra Feitosa Gonçalves ◽  
Palloma Rodrigues de Andrade ◽  
Cristina Katya Torres Teixeira Mendes ◽  
...  

BACKGROUND: Parkinson’s Disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE: Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS: The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS: Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS: Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.


Author(s):  
Mark S. George ◽  
E. Baron Short ◽  
Suzanne E. Kerns

The use of brain stimulation for the treatment and investigation of mood disorders is rapidly expanding. Mood disorders are common, but so are treatment-refractory or intolerant patients, explaining increasing interest in alternatives to medications and talk therapy. Additionally, depressive episodes are periodic or temporary states and are thus amenable to pulsatile, non-systemic treatments. The oldest brain stimulation method, electroconvulsive therapy (ECT), remains the most effective acute antidepressant available. The newer brain stimulation methods, in particular repetitive transcranial magnetic stimulation (rTMS), also show that non-invasive stimulation of key brain regions not only effectively treats depression, but also causes quantifiable changes in brain biomarkers. More research is needed, though, to better understand how these treatments work, for whom they work, and how to optimize their use.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 281-301 ◽  
Author(s):  
Lorenzo Pini ◽  
Rosa Manenti ◽  
Maria Cotelli ◽  
Francesca B. Pizzini ◽  
Giovanni B. Frisoni ◽  
...  

Non-invasive brain stimulation (NIBS) is emerging as a promising rehabilitation tool for a number of neurodegenerative diseases. However, the therapeutic mechanisms of NIBS are not completely understood. In this review, we will summarize NIBS results in the context of brain imaging studies of functional connectivity and metabolites to gain insight into the possible mechanisms underlying recovery. We will briefly discuss how the clinical manifestations of common neurodegenerative disorders may be related with aberrant connectivity within large-scale neural networks. We will then focus on recent studies combining resting-state functional magnetic resonance imaging with NIBS to delineate how stimulation of different brain regions induce complex network modifications, both at the local and distal level. Moreover, we will review studies combining magnetic resonance spectroscopy and NIBS to investigate how microscale changes are related to modifications of large-scale networks. Finally, we will re-examine previous NIBS studies in dementia in light of this network perspective. A better understanding of NIBS impact on the functionality of large-scale brain networks may be useful to design beneficial treatments for neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document