scholarly journals The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2* and α3β4* Receptors

2020 ◽  
Vol 12 ◽  
Author(s):  
Petra Scholze ◽  
Sigismund Huck

Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yue Zhao

Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment.


2019 ◽  
Author(s):  
Glenda Lassi ◽  
Vanessa Tan ◽  
Liam Mahedy ◽  
Ana Sofia F. Oliveira ◽  
Maddy L. Dyer ◽  
...  

AbstractGenome-wide association studies have identified associations between variation at rs16969968/rs1051730 in the CHRNA5–A3–B4 gene cluster and smoking related outcomes. Experiments in rodents have described the nicotinic acetylcholine receptors (nAChRs) subunits encoded by this gene cluster and showed a lack of nicotine aversion in nAChRs deficient animal models. We conducted a nicotine challenge and a smoking topography study in humans, hypothesising that: 1. responses to a nicotine challenge would differ according to the rs16969968/rs1051730 genotype and 2. genotype may influence nicotine intake via smoking topography.We used linear regressions to examine associations between rs16969968/rs1051730 genotype and subjective (questionnaires) and objective (physiological parameters) responses following acute nicotine exposure in never smokers (hypothesis 1) or cigarette smoking in current smokers (hypothesis 2). There was evidence to suggest nicotine exposure increases blood pressure and heart rate, and negatively affects mood, but insufficient evidence that these effects differ by genotype. Carriers of the minor allele following smoking one cigarette, exhibited reduced cravings (b=-2.46, 95% CI -4.87 to - 0.06, p=0.04) and inhaled less smoke per cigarette (b=-0.24, 95% CI - 0.43 to - 0.06, p=0.01) and per puff (b=-0.18, 95% CI -0.32 to -0.01, p=0.02). These results suggest that we need to carefully consider the translational value of the findings of aversion behaviour in nAChRs rodent models, and that deeper inhalation does not explain the strong association between rs16969968/rs1051730 genotype and objective biomarkers of tobacco exposure.


2020 ◽  
Vol 21 (6) ◽  
pp. 466-470
Author(s):  
Emine Kandemis ◽  
Gulten Tuncel ◽  
Ozen Asut ◽  
Sehime G. Temel ◽  
Mahmut C. Ergoren

Background: The use of psychoactive substances is one of the most dangerous social problems worldwide. Nicotine dependence results from the interaction between neurobiological, environmental and genetic factors. Serotonin is a neurotransmitter that has a wide range of central nervous system activities. The serotonin transporter gene has been previously linked to psychological traits. Objective: A variable number of tandem repeats within the serotonin transporter-linked polymorphic gene region are believed to alter the transcriptional efficiency of the 5-HTT gene. Therefore, we aimed to investigate the association between this polymorphic site and smoking behavior in the Turkish Cypriot population. Methods: A total of 259 (100 smokers, 100 non-smokers and 59 ex-smokers) Turkish Cypriots were included in this population-based cross-sectional study. Genomic DNA was extracted from peripheral blood samples and the 5-HTTVNTR2 polymorphisms were determined by the PCR-RFLP. Results: The allelic frequency and genotype distribution results of this study showed a strong association (P<0.0001) between smokers and non-smokers. No statistical significance was found between non-smokers and ex-smokers. Conclusion: This is the first genetic epidemiology study to investigate the allelic frequencies of 5-HTTVNTR2 polymorphisms associated with smoking behavior in the Turkish Cypriot population. Based on the results of this study, genome-wide association studies should be designed for preventive medicine in this population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Basel M. Al-Barghouthi ◽  
Larry D. Mesner ◽  
Gina M. Calabrese ◽  
Daniel Brooks ◽  
Steven M. Tommasini ◽  
...  

AbstractGenome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


2004 ◽  
Vol 17 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Merav Kedmi ◽  
Arthur L. Beaudet ◽  
Avi Orr-Urtreger

Nicotine, the main addictive component of tobacco, evokes a wide range of dose-dependent behaviors in rodents, and when administrated in high doses, it can induce clonic-tonic seizures. Nicotine acts through the nicotinic acetylcholine receptors (nAChRs). Mutations in the human α4- and the β2-nAChR subunit genes cause autosomal dominant nocturnal frontal lobe epilepsy. Using transgenic mice with mutations in nAChR subunits, it was demonstrated previously that the α4-, α5-, and α7-subunits are involved in nicotine-induced seizures. To examine the possibility that the β4-subunit is also involved in this phenotype, we tested mice with homozygous β4-subunit deficiency. The β4 null mice were remarkably resistant to nicotine-induced seizures compared with wild-type and α5 null mice. We also generated mice with double deficiency of both α5- and β4-nAChR subunits and demonstrated that they were more resistant to nicotine’s convulsant effect than either the α5 or the β4 single mutant mice. In addition, the single α5 mutants and the double α5β4-deficient mice exhibited a significantly shorter latency time to seizure than that of the wild-type mice. Our results thus show that β4-containing nAChRs have a crucial role in the pathogenesis of nicotine-induced seizures. Furthermore, by comparing multiple mutant mice with single and double subunit deficiency, we suggest that nicotinic receptors containing either α5- or β4-subunits are involved in nicotine-induced seizures and that receptors containing both subunits are likely to contribute to this phenomena as well. However, the α5-subunit, but not the β4-subunit, regulates the rate of response to high doses of nicotine.


2018 ◽  
Vol 52 (3) ◽  
pp. 1800647 ◽  
Author(s):  
Natalie Terzikhan ◽  
Fangui Sun ◽  
Fien M. Verhamme ◽  
Hieab H.H. Adams ◽  
Daan Loth ◽  
...  

Although several genome-wide association studies (GWAS) have investigated the genetics of pulmonary ventilatory function, little is known about the genetic factors that influence gas exchange. The aim of the study was to investigate the heritability of, and genetic variants associated with the diffusing capacity of the lung.GWAS was performed on diffusing capacity of the lung measured by carbon monoxide uptake (DLCO) and per alveolar volume (VA) using the single-breath technique, in 8372 individuals from two population-based cohort studies, the Rotterdam Study and the Framingham Heart Study. Heritability was estimated in related (n=6246) and unrelated (n=3286) individuals.Heritability of DLCO and DLCO/VA ranged between 23% and 28% in unrelated individuals and between 45% and 49% in related individuals. Meta-analysis identified a genetic variant in ADGRG6 that is significantly associated with DLCO/VA. Gene expression analysis of ADGRG6 in human lung tissue revealed a decreased expression in patients with chronic obstructive pulmonary disease (COPD) and subjects with decreased DLCO/VA.DLCO and DLCO/VA are heritable traits, with a considerable proportion of variance explained by genetics. A functional variant in ADGRG6 gene region was significantly associated with DLCO/VA. Pulmonary ADGRG6 expression was decreased in patients with COPD.


2020 ◽  
Vol 82 (1) ◽  
pp. 413-431 ◽  
Author(s):  
Edwin K. Silverman

Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthias Munz ◽  
Inken Wohlers ◽  
Eric Simon ◽  
Tobias Reinberger ◽  
Hauke Busch ◽  
...  

AbstractExploration of genetic variant-to-gene relationships by quantitative trait loci such as expression QTLs is a frequently used tool in genome-wide association studies. However, the wide range of public QTL databases and the lack of batch annotation features complicate a comprehensive annotation of GWAS results. In this work, we introduce the tool “Qtlizer” for annotating lists of variants in human with associated changes in gene expression and protein abundance using an integrated database of published QTLs. Features include incorporation of variants in linkage disequilibrium and reverse search by gene names. Analyzing the database for base pair distances between best significant eQTLs and their affected genes suggests that the commonly used cis-distance limit of 1,000,000 base pairs might be too restrictive, implicating a substantial amount of wrongly and yet undetected eQTLs. We also ranked genes with respect to the maximum number of tissue-specific eQTL studies in which a most significant eQTL signal was consistent. For the top 100 genes we observed the strongest enrichment with housekeeping genes (P = 2 × 10–6) and with the 10% highest expressed genes (P = 0.005) after grouping eQTLs by r2 > 0.95, underlining the relevance of LD information in eQTL analyses. Qtlizer can be accessed via https://genehopper.de/qtlizer or by using the respective Bioconductor R-package (https://doi.org/10.18129/B9.bioc.Qtlizer).


Sign in / Sign up

Export Citation Format

Share Document