scholarly journals An Alum-Free Jellyfish Treatment for Food Applications

2021 ◽  
Vol 8 ◽  
Author(s):  
Gianluca Bleve ◽  
Francesca Anna Ramires ◽  
Stefania De Domenico ◽  
Antonella Leone

Jellyfish, marketed and consumed as food in The Far East, are traditionally processed using salt and alum mixtures. In recent years, the interest of Western consumers in jellyfish (JF) as a food source is increasing. In Europe [European Union (EU)], JF-derived food products are regulated by a novel food law, but methods for JF treatment and processing have not been developed yet. In this study, a protocol for the stabilization and processing of JF into semi-finished food products without the use of alum is proposed for the first time. Safety and quality parameters, together with a series of technological and nutritional traits, were used to monitor the proposed process and for the characterization of the JF-derived products. Calcium lactate (E327), calcium citrate (E333), and calcium acetate (E263), which are food thickening/stabilizing agents allowed by EU regulations, were used in order to control the presence of possible microbial pathogens and spoilage species. The use of calcium lactate and citrate led to an increase in texture values (~1.7–1.8-fold higher than in starting raw materials) and in several nutritional traits such as antioxidant activity, and protein and fatty acid content. In particular, the combination of JF treatments with calcium salts and phenolic compounds resulted in an antioxidant activity increase of up to 8-fold, protein concentration increase of up to 2.6-fold, fatty acid composition maintenance, and a ω6/ω3 ratio lower than 1. For the first time, the application of phenolic compounds to improve JF technological and nutritional features was verified. This study proposes a new procedure for JF treatment and stabilization useful for future potential food applications in Western countries.

Author(s):  
Maltseva E.M. ◽  
Egorova I.N. ◽  
Pinchuk L.G.

Pale-flowered licorice (Glycyrrhiza pallidiflora Maxim.) is the pea family (Fabaceae) perennial herb. It is a Russian Far East endemic. Pale-flowered licorice refers to the false (not sweet) licorice section (Pseudoglycyrrhiza Krug.), which do not accumulate glycyrrhizin derivatives. The G. pallidiflora successful introduction has been carried out over the past 5 years in the “Apothecary garden” territory, FRC UUH SB RAS, Kemerovo. Phytochemical studies screening biologically active compounds main classes of the plant aerial part confirmed the presence of a complex of phenolic compounds. The content of catechin derivatives and condensed-type tannins - proanthocyanidins (PAC) data in G. pallidiflora herb were obtained for the first time. In different years of cultivation, licorice herb accumulates phenolic compounds - up to 2.83 ± 0.22% in terms of gallic acid, flavonoids - up to 2.44 ± 0.03% in terms of rutin and PAC in terms of cyanidine chloride - up to 2.61 ± 0.11%. It was found that the maximum content of the phenolic compounds and PAC sum was observed in the herb for 4 years development. The greatest number of flavonoids accumulates in the herb harvested in the 3rd year of cultivation. A positive significant linear relation was found between antioxidant activity (AOA) and the total phenolic compounds and PAC content (r≥0.98). Considering that BAC with IC values ≤ 50 μg / ml in the DPPH assay refer to active antioxidant’s licorice herb can be classified as a plant with high antioxidant potential. It was found that the iron chelating activity of the G. pallidiflora herb is in direct dependence (r≥0.94) on the content of flavonoids. The obtained results demonstrate the importance of further study of this plant as a source of BAC, including plant antioxidants.


Author(s):  
HAITHAM ALI IBRAHIM ◽  
FATEHIA SAYED ELSHARAWY ◽  
MAHMMOUD ELHASSAB ◽  
SAMAH SHABANA ◽  
EMAN GABER HAGGAG

Objective: phytochemical investigation of the ethyl acetate fraction (EAF) of 80% aqueous methanol extract (AME) of Dypsis leptocheilos leaves, in addition to evaluation of the antioxidant, cytotoxic and antimicrobial activities of the AME and EAF. Docking was used to predict and understand cytotoxicity of the isolated compounds. Methods: The ethyl acetate fraction (EAF) of Dypsis leptocheilos leaves was subjected to different chromatographic separation techniques. Structures of the isolated compounds were established by different spectroscopic techniques (1H/13C NMR). Antioxidant activity was evaluated by DPPH assay, while cytotoxicity was evaluated by MTT cell viability assay. Antimicrobial activity was evaluated by agar diffusion method. The docking study was conducted using Auto Dock Vina; the estrogen receptor (PDB 5t92) was used as a receptor for the docking. Results: Chromatographic separation techniques were led to the isolation of five phenolic compounds; these compounds were identified to be apigenin 8-C-β-D-glucopyranoside (Vitexin) (1), apigenin 6-C-β-D-glucopyranoside (Isovitexin) (2), luteolin 7-O-β-D-glucopyranoside (3), luteolin 8-C-β-D-glucopyranoside (Orientin) (4), luteolin 6-C-β-D-glucopyranoside (Isoorientin) (5). They were isolated and identified for the first time from this plant species. The AME and EAF showed moderate activity against Gram positive and Gram negatvie bacteria, while both of them showed similar and powerful antioxidant activity with SC50 = 12.8±0.56 µg/ml and SC50 = 17±0.77 µg/ml respectively, compared to ascorbic (reference drug) SC50 = 14.2±0.35 µg/ml. The EAF showed higher cytotoxic activity on the MCF-7 cells (human breast cancer cell line), with IC50 = 12.3 ± 1.82 µg/ml, compared to Vinblastine Sulfate (reference drug). All isolated compounds showed good binding affinity to the estrogen receptors existed in the MCF-7 cell. Conclusion: Five phenolic compounds were isolated for the first time from the EAF of Dypsis leptocheilos leaves. The AME and EAF extracts showed variable antioxidant, antimicrobial and cytotoxic activities.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3336
Author(s):  
Saray Gutiérrez-Gordillo ◽  
Leontina Lipan ◽  
Víctor Hugo Durán Zuazo ◽  
Esther Sendra ◽  
Francisca Hernández ◽  
...  

The Mediterranean region is one of the most water-scarce areas worldwide and is considered a climate-change hotspot. To assure the viability and competitiveness of irrigated agriculture, it is vital to implement strategies that can maximize water saving without compromising yield. Deficit irrigation (DI) for cultivating drought-tolerant species such as almond (Prunus dulcis (Mill.) D.A. Webb) can help in achieving this goal, while at the same time improving fruit chemical composition. This work evaluated the effect of DI techniques and cultivars on the chemical composition of almonds (cvs. Marta, Guara, and Lauranne) in order to elucidate the most suitable irrigation dose under water-scarcity scenarios. Three irrigation regimes were imposed: a control treatment (FI), which was fully irrigated, receiving 100% of the irrigation requirement (IR), and two sustained-deficit irrigation (SDI) strategies that received 75% (SDI75) and 65% (SDI65) of IR. Significant differences among cultivars and irrigation treatments were observed for antioxidant activity and organic acid, sugar, and fatty acid content, which were increased by the SDI strategies. In addition, highly significant correlations were found between leaf-water potential and components such as fumaric acid, sugars, and fatty acids. In terms of the cultivars, cv. Marta showed the highest antioxidant activity, cv. Guara was the richest in organic acids, and cv. Lauranne had the highest fatty acid content. Consequently, SDI strategies improved almond quality parameters related to their nutritional and sensory composition, with significant water savings (reductions of 25–35%) and without important yield loss.


2016 ◽  
Vol 7 (10) ◽  
pp. 4222-4230 ◽  
Author(s):  
Gianpiero Bonetti ◽  
Paola Tedeschi ◽  
Giuseppe Meca ◽  
Davide Bertelli ◽  
Jordi Mañes ◽  
...  

Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves.


2009 ◽  
Vol 10 (2) ◽  
pp. e759
Author(s):  
S Asgary ◽  
B Nazari ◽  
N Sarrafzadegan ◽  
S Saberi ◽  
L Azadbakht ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 33-39
Author(s):  
Lilis Sukeksi ◽  
Meirany Sianturi ◽  
Lionardo Setiawan

The purpose of this study is to examine the effect of alkali concentration and the amount of added morinda citrifolia toward the formed of soap product. This study begins with maserating the noni fruit with ethanol. Then the making of transparent solid soap was made in the saponification process with a fixed variable oil volume of 70 ml, reaction temperature of 80 ° C and stirring time of 60 minutes. Whereas for the independent variables alkaline solution concentrations were 26%, 28%, 30%, 32%, the amount of noni extract 0 g, 10 g, 20 g, 30 g. The responses observed were water content, acidity (pH), saponification number, free alkali, free fatty acid, foam stability, surface tension and antioxidant activity. The best results were obtained at 26% alkaline concentration and 30 g of noni extract with a moisture content of 24,10%, 0% free alkali content, pH 9,0, free fatty acid content 0,480%, saponification 200 mg / g, surface tension 29,70 dyne / cm, foam stability 81% and antioxidant activity of 153,85 0µg / µL.


2021 ◽  
Vol 70 (5) ◽  
pp. 607-613
Author(s):  
Fahad Y. Al-Juhaimi ◽  
Kashif Ghafoor ◽  
Mehmet Musa Özcan ◽  
Nurhan Uslu ◽  
Elfadıl E Babiker ◽  
...  

2010 ◽  
Vol 55 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Sladjana Zilic ◽  
Sladjana Sobajic ◽  
Snezana Mladenovic-Drinic ◽  
Branka Kresovic ◽  
Marko Vasic

Effects of increased temperatures on the lipoxygenase activity and changes of soya bean fatty acids were observed in the present study. The kernels of soya bean cultivars Bosa and ZPS 015 were subjected to the treatments of extrusion, autoclaving, micronisation and microwave roasting. Depending on the technological processing procedure, the kernels were exposed to temperatures ranging from 60 to 150?C for 25 to 30 seconds during extrusion and for 30 minutes during autoclaving. The temperature that developed in the course of the microwave radiation and autoclaving did not cause statistically significant differences between oil content in heat treated and fresh kernels of soya bean. However, the oil content was higher in soya bean flakes (micronized kernels) and lower in grits than in fresh kernels. The heat treatments resulted in the significant decrease of the linolenic fatty acid content. Depending on the temperature and applied heat treatments, the content of linoleic and oleic fatty acid oscillated. High temperatures caused changes in unsaturated fatty acids with 18 carbon atoms resulting in relative increase of the stearic acid content. The lipoxygenase activity decreased in correlation with increased temperatures and the time of heating. The maximum drop of the activity was observed after kernel exposure to the extrusion and micronisation processes at the temperature of 100oC. However, a significant lipoxygenase activity increase was recorded in both studied cultivars after one-minute microwave heating, i.e. at the temperature about 60?C. A further temperature increase led to a gradual denaturation of the enzyme and therefore to its decreased activity.


Sign in / Sign up

Export Citation Format

Share Document