scholarly journals Exploring the Effects of Greek Yogurt Supplementation and Exercise Training on Serum Lithium and Its Relationship With Musculoskeletal Outcomes in Men

2021 ◽  
Vol 8 ◽  
Author(s):  
Ryan W. Baranowski ◽  
Lauren E. Skelly ◽  
Andrea R. Josse ◽  
Val A. Fajardo

Dairy products can act as a dietary source of lithium (Li), and a recent study in university-aged males demonstrated that Greek yogurt (GY) supplementation augmented gains in fat free mass, strength and bone formation after 12 weeks of resistance exercise training compared to carbohydrate (CHO) pudding supplementation. Here, we performed secondary analyses to explore whether GY would alter serum Li levels and whether changes in serum Li would associate with changes in body composition, strength, and bone turnover markers. Results show that the GY group maintained serum Li levels after exercise training, whereas the CHO group did not. Maintaining/elevating serum Li levels was also associated with greater gains in strength and reductions in bone resorption. However, controlling for other dietary factors in GY such as protein and calcium weakened these associations. Thus, future studies should assess the causative role, if any, of dietary Li alone on strength and bone resorption in humans.

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1154 ◽  
Author(s):  
Marius Kirmse ◽  
Vanessa Oertzen-Hagemann ◽  
Markus de Marées ◽  
Wilhelm Bloch ◽  
Petra Platen

We aimed to determine the effects of long-term collagen peptide (CP) supplementation and resistance exercise training (RET) on body composition, strength, and muscle fiber cross-sectional area (fCSA) in recreationally active men. Fifty-seven young men were randomly and double-blinded divided into a group receiving either collagen peptides (COL, 15 g/day) or a placebo (PLA). Strength testing, bioimpedance analysis, and muscle biopsies were used prior to and after an RET intervention. Food record protocols were performed during the RET intervention. The groups trained three times a week for 12 weeks. Baseline parameters showed no differences between groups, and the external training load and dietary food intake were also similar. COL showed a significant increase in fat-free mass (FFM) compared with the placebo group (p < 0.05). Body fat mass (BFM) was unchanged in COL, whereas a significant increase in BFM was observed in PLA. Both groups showed significant increases in all strength tests, with a trend for a slightly more pronounced effect in COL. The fCSA of type II muscle fibers increased significantly in both groups without differences between the two groups. We firstly demonstrated improved body composition in healthy, recreationally active men subsequent to prolonged CP supplementation in combination with RET. As the observed increase in FFM was not reflected in differences in fCSA hypertrophy between groups, we assume enhanced passive connective tissue adaptations in COL due to CP intake.


2019 ◽  
Vol 54 (10) ◽  
pp. 573-581 ◽  
Author(s):  
Kerry R O’Bryan ◽  
Thomas M Doering ◽  
Robert W Morton ◽  
Vernon G Coffey ◽  
Stuart M Phillips ◽  
...  

ObjectiveTo determine the effects of multi-ingredient protein (MIP) supplements on resistance exercise training (RT)-induced gains in muscle mass and strength compared with protein-only (PRO) or placebo supplementation.Data sourcesSystematic search of MEDLINE, Embase, CINAHL and SPORTDiscus.Eligibility criteriaRandomised controlled trials with interventions including RT ≥6 weeks in duration and a MIP supplement.DesignRandom effects meta-analyses were conducted to determine the effect of supplementation on fat-free mass (FFM), fat mass, one-repetition maximum (1RM) upper body and 1RM lower body muscular strength. Subgroup analyses compared the efficacy of MIP supplementation relative to training status and chronological age.ResultsThe most common MIP supplements included protein with creatine (n=17) or vitamin D (n=10). Data from 35 trials with 1387 participants showed significant (p<0.05) increases in FFM (0.80 kg (95% CI 0.44 to 1.15)), 1RM lower body (4.22 kg (95% CI 0.79 to 7.64)) and 1RM upper body (2.56 kg (95% CI 0.79 to 4.33)) where a supplement was compared with all non-MIP supplemented conditions (means (95% CI)). Subgroup analyses indicated a greater effect of MIP supplements compared with all non-MIP supplements on FFM in untrained (0.95 kg (95% CI 0.51 to 1.39), p<0.0001) and older participants (0.77 kg (95% CI 0.11 to 1.43), p=0.02); taking MIP supplements was also associated with gains in 1RM upper body (1.56 kg (95% CI 0.80 to 2.33), p=0.01) in older adults.Summary/conclusionsWhen MIP supplements were combined with resistance exercise training, there were greater gains in FFM and strength in healthy adults than in counterparts who were supplemented with non-MIP. MIP supplements were not superior when directly compared with PRO supplements. The magnitude of effect of MIP supplements was greater (in absolute values) in untrained and elderly individuals undertaking RT than it was in trained individuals and in younger people.Trial registration numberCRD42017081970.


1996 ◽  
Vol 81 (5) ◽  
pp. 2095-2104 ◽  
Author(s):  
S. Nissen ◽  
R. Sharp ◽  
M. Ray ◽  
J. A. Rathmacher ◽  
D. Rice ◽  
...  

Nissen, S., R. Sharp, M. Ray, J. A. Rathmacher, D. Rice, J. C. Fuller, Jr., A. S. Connelly, and N. Abumrad. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 81(5): 2095–2104, 1996.—The effects of dietary supplementation with the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) were studied in two experiments. In study 1, subjects ( n = 41) were randomized among three levels of HMB supplementation (0, 1.5 or 3.0 g HMB/day) and two protein levels (normal, 117 g/day, or high, 175 g/day) and weight lifted for 1.5 h 3 days/wk for 3 wk. In study 2, subjects ( n = 28) were fed either 0 or 3.0 g HMB/day and weight lifted for 2–3 h 6 days/wk for 7 wk. In study 1, HMB significantly decreased the exercise-induced rise in muscle proteolysis as measured by urine 3-methylhistidine during the first 2 wk of exercise (linear decrease, P < 0.04). Plasma creatine phosphokinase was also decreased with HMB supplementation ( week 3, linear decrease, P < 0.05). Weight lifted was increased by HMB supplementation when compared with the unsupplemented subjects during each week of the study (linear increase, P < 0.02). In study 2, fat-free mass was significantly increased in HMB-supplemented subjects compared with the unsupplemented group at 2 and 4–6 wk of the study ( P < 0.05). In conclusion, supplementation with either 1.5 or 3 g HMB/day can partly prevent exercise-induced proteolysis and/or muscle damage and result in larger gains in muscle function associated with resistance training.


2017 ◽  
Vol 42 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Angela S. Alberga ◽  
Denis Prud’homme ◽  
Ronald J. Sigal ◽  
Gary S. Goldfield ◽  
Stasia Hadjiyannakis ◽  
...  

We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14–18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.


Lupus ◽  
2021 ◽  
Vol 30 (6) ◽  
pp. 965-971
Author(s):  
Wang Tianle ◽  
Zhang Yingying ◽  
Hong Baojian ◽  
Gu Juanfang ◽  
Wang Hongzhi ◽  
...  

Objectives SLE is a chronic autoimmune disease, which can affect the level of bone metabolism and increase the risk of osteoporosis and fracture. The purpose of this research is to study the effect of SLE on bone turnover markers without the influence of glucocorticoids. Methods A total of 865 female subjects were recruited from Zhejiang Provincial People’s Hospital and the First Hospital of Jiaxing, including 391 SLE patients without the influence of glucocorticoids and 474 non-SLE people. We detected Bone turnover markers including amino-terminal propeptide of type 1 procollagen (P1NP), C-terminal turnover of β - I collagen (β-CTX), N-terminal midfragment of osteocalcin (NMID) and 25(OH)D, and analyzed the difference in Bone turnover markers between the SLE group and the control group, as well as the influence of age and season on bone metabolism in female SLE patients. Results In the SLE group, the average age was 43.93±13.95 years old. In the control group, the average age was 44.84±11.42 years old. There was no difference between the two groups (t = 1.03, P = 0.30). P1NP, NMID and 25(OH)D in the SLE group were significantly lower than those in the control group (Z = 8.44, p < 0.001; Z = 14.41, p < 0.001; Z = 2.19, p = 0.029), and β-CTX in the SLE group was significantly higher than that in the control group (Z = 2.61, p = 0.009). In addition, the levers of β-CTX, NMID, P1NP and 25(OH)D in older SLE female patients were statistically significantly higher than those in younger (ρ = 0.104, p = 0.041; ρ = 0.223, p < 0.001; ρ = 0.105, p = 0.038; ρ = 0.289, p < 0.001). Moreover, β-CTX reached a high value in summer and PINP reached a low value in winter. Conclusion The bone formation markers of female SLE patients without glucocorticoid were lower than those of normal people and the bone resorption marker was higher than that of normal people. The 25 (OH) D of female SLE patients without glucocorticoid was lower than that of normal people. The risk of osteoporosis and fracture may be higher in elderly women with SLE. The bone resorption level of female SLE patients is high in summer and the bone formation level is low in winter.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 529-529
Author(s):  
Amanda Randolph ◽  
Tatiana Moro ◽  
Adetutu Odejimi ◽  
Blake Rasmussen ◽  
Elena Volpi

Abstract Type 2 Diabetes Mellitus (T2DM) accelerates the incidence and increases the prevalence of sarcopenia in older adults. This suggests an urgent need for identifying effective sarcopenia treatments for older adults with T2DM. It is unknown whether traditional approaches, such as progressive resistance exercise training (PRET), can effectively counteract sarcopenia in older patients with T2DM. To test the efficacy of PRET for the treatment of sarcopenia in older adults with T2DM, 30 subjects (15 T2DM and 15 age- and sex- matched controls) underwent metabolic testing with muscle biopsies before and after a 13-week full-body PRET program. Primary outcome measures included changes in appendicular lean mass, muscle strength, and mixed muscle fractional synthesis rate (FSR). Before PRET, BMI-adjusted appendicular lean mass was significantly lower in the T2DM group (0.7095±0.0381 versus 0.8151±0.0439, p&lt;0.0001). As a result of PRET, appendicular lean mass adjusted for BMI and muscle strength increased significantly in both groups, but to a lesser extent for the T2DM group (p=0.0009) . Preliminary results for FSR (n=25) indicate that subjects with T2DM had lower basal FSR prior to PRET (p=0.0197) . Basal FSR increased significantly in the control group after PRET (p=0.0196), while it did not change in the T2DM group (p=0.3537). These results suggest that in older adults the positive effect of PRET on muscle anabolism and strength is reduced by T2DM . Thus, older adults with T2DM may require more intensive, multimodal and targeted sarcopenia treatment. Funded by NIH R01AG049611 and P30AG024832.


Sign in / Sign up

Export Citation Format

Share Document