scholarly journals A Novel Seven Gene Signature-Based Prognostic Model to Predict Distant Metastasis of Lymph Node-Negative Triple-Negative Breast Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Wenting Peng ◽  
Caijin Lin ◽  
Shanshan Jing ◽  
Guanhua Su ◽  
Xi Jin ◽  
...  

BackgroundThe prognosis of lymph node-negative triple-negative breast cancer (TNBC) is still worse than that of other subtypes despite adjuvant chemotherapy. Reliable prognostic biomarkers are required to identify lymph node-negative TNBC patients at a high risk of distant metastasis and optimize individual treatment.MethodsWe analyzed the RNA sequencing data of primary tumor tissue and the clinicopathological data of 202 lymph node-negative TNBC patients. The cohort was randomly divided into training and validation sets. Least absolute shrinkage and selection operator Cox regression and multivariate Cox regression were used to construct the prognostic model.ResultsA clinical prognostic model, seven-gene signature, and combined model were constructed using the training set and validated using the validation set. The seven-gene signature was established based on the genomic variables associated with distant metastasis after shrinkage correction. The difference in the risk of distant metastasis between the low- and high-risk groups was statistically significant using the seven-gene signature (training set: P < 0.001; validation set: P = 0.039). The combined model showed significance in the training set (P < 0.001) and trended toward significance in the validation set (P = 0.071). The seven-gene signature showed improved prognostic accuracy relative to the clinical signature in the training data (AUC value of 4-year ROC, 0.879 vs. 0.699, P = 0.046). Moreover, the composite clinical and gene signature also showed improved prognostic accuracy relative to the clinical signature (AUC value of 4-year ROC: 0.888 vs. 0.699, P = 0.029; AUC value of 5-year ROC: 0.882 vs. 0.693, P = 0.038). A nomogram model was constructed with the seven-gene signature, patient age, and tumor size.ConclusionsThe proposed signature may improve the risk stratification of lymph node-negative TNBC patients. High-risk lymph node-negative TNBC patients may benefit from treatment escalation.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16073-e16073
Author(s):  
Weitao Zhuang ◽  
Xiao-song Ben ◽  
Dan Tian ◽  
Zihao Zhou ◽  
Gang Chen ◽  
...  

e16073 Background: Esophageal squamous cell cancer (ESCC) is a malignant tumor with a poor 5-year relative survival. A prognosis prediction signature associated with DNA Damage Response (DDR) genes in ESCC was explored in this study. Methods: The clinical and gene expression profiles of ESCC patients were downloaded from the GEO and TCGA database. Univariate Cox regression and 1000 iterations of 10-fold cross-validation of LASSO Cox regression with binomial deviance minimization criteria were used to identify DDR genes as potential object and a prognostic signature for ESCC survival prediction, followed by validation of the signature via TCGA cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: A signature of 8 DDR genes were constructed as being significantly associated with overall survival (OS) among patients with esophageal squamous cell carcinoma. The pronostic signature stratified ESCC patients into low- vs high-risk groups in terms of OS in the training set, testing set and the validation cohorts, and remained as an independent prognostic factor in multivariate analyses (hazard ratio (HR) in training set, 0.17 [95% CI, 0.09-0.35; P < 0 .001], HR in testing set, 0.38 [95% CI, 0.16-0.93; P = 0.029], HR in discovery cohort, 0.171 [95% CI, 0.03-0.48; P < 0 .001]) after adjusting for clinicopathological factors. The 8-DDR gene signature achieved a higher accuracy (C-index, 0.69; AUCs for 1-, 3- and 5-year OS, 0.74, 0.77 and 0.76, respectively) than 7 previously reported multigene signatures (C-index range, 0.53 to 0.60; AUCs range, 0.55to 0.66, 0.54 to 0.64 and 0.62 to 0.66, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor location, grade, adjuvant therapy and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the DNA repair was more prominently enriched in the high-risk group while the low-risk group had not enrichment of any process (P > 0.05 for all). Conclusions: Taken together, our study identified 8 DDR genes related to the prognosis of ESCC patients, and constructed a robust prognostic signature to effectively stratify ESCC patients with different survival rates, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huadi Shi ◽  
Fulan Zhong ◽  
Xiaoqiong Yi ◽  
Zhenyi Shi ◽  
Feiyan Ou ◽  
...  

Objective: The aim of the present study was to construct a prognostic model based on the peptidyl prolyl cis–trans isomerase gene signature and explore the prognostic value of this model in patients with hepatocellular carcinoma.Methods: The transcriptome and clinical data of hepatocellular carcinoma patients were downloaded from The Cancer Genome Atlas and the International Cancer Genome Consortium database as the training set and validation set, respectively. Peptidyl prolyl cis–trans isomerase gene sets were obtained from the Molecular Signatures Database. The differential expression of peptidyl prolyl cis–trans isomerase genes was analyzed by R software. A prognostic model based on the peptidyl prolyl cis–trans isomerase signature was established by Cox, Lasso, and stepwise regression methods. Kaplan–Meier survival analysis was used to evaluate the prognostic value of the model and validate it with an independent external data. Finally, nomogram and calibration curves were developed in combination with clinical staging and risk score.Results: Differential gene expression analysis of hepatocellular carcinoma and adjacent tissues showed that there were 16 upregulated genes. A prognostic model of hepatocellular carcinoma was constructed based on three gene signatures by Cox, Lasso, and stepwise regression analysis. The Kaplan–Meier curve showed that hepatocellular carcinoma patients in high-risk score group had a worse prognosis (p &lt; 0.05). The receiver operating characteristic curve revealed that the area under curve values of predicting the survival rate at 1, 2, 3, 4, and 5 years were 0.725, 0.680, 0.644, 0.630, and 0.639, respectively. In addition, the evaluation results of the model by the validation set were basically consistent with those of the training set. A nomogram incorporating clinical stage and risk score was established, and the calibration curve matched well with the diagonal.Conclusion: A prognostic model based on 3 peptidyl prolyl cis–trans isomerase gene signatures is expected to provide reference for prognostic risk stratification in patients with hepatocellular carcinoma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocarcinoma (LUAD). Methods RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prognosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well. Results High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the training set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results. Conclusions This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 6056-6056
Author(s):  
Lan Zhao ◽  
Feng Gao ◽  
Wang Wei ◽  
Xin Duan ◽  
Yuchen Zhang ◽  
...  

6056 Background: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer, with diverse molecular characteristics and clinical outcomes. Our aim in this study is to dissect the molecular heterogeneity of NPC, followed by construction of a prognostic model for prediction of distant metastasis. Methods: For molecular subtyping of NPC using miRNA expression data, we selected 86 stage II (AJCC 7th Edition) NPC patients from GSE32960 as training cohort. The remaining 226 NPC patients from GSE32960 and 246 NPC patients from GSE70970 were used as two validation cohorts. Consensus clustering was employed for unsupervised classification of the training cohort. Classifier was built using support vector machine (SVM), and was validated in the two validation cohorts. Univariate and multivariate Cox regression analyses were employed for feature selection and constructing a prognostic model for predicting high-risk distant metastasis, respectively. Results: We identified three NPC subtypes (NPC1, 2, and 3) that are molecularly distinct and clinically relevant. NPC1 (~45%) is enriched for cell cycle related pathways, and patients classified to NPC1 have an intermediate survival; NPC3 (~19%) is enriched for immune related pathways, and has good clinical outcomes. More importantly, NPC2 (~36%) is associated with poor prognosis, and is characterized by upregulation of epithelial-mesenchymal transition (EMT). Out of the total 25 differentially expressed miRNAs in NPC2, miR-142, miR-26a, miR-141 and let-7i have significant prognostic power (p < 0.05), as determined by univariate Cox regression analysis. For identification of high-risk distant metastasis, we built a multivariate Cox regression model using the selected 4 miRNAs. Our model can robustly stratify NPC patients into high- and low- risk groups both in GSE32960 (HR 3.1, 95% CI 1.8-5.4, p = 1.2e-05) and GSE70970 (HR 2.2, 95% CI 1.1-4.5, p = 0.022) cohorts. Conclusions: We proposed for the first time that NPC can be stratified into three subtypes. Using a panel of 4 miRNAs, we established a prognostic model that can robustly stratify NPC patients into high- and low- risk groups of distant metastasis.


Neoplasma ◽  
2015 ◽  
Vol 62 (05) ◽  
pp. 821-826
Author(s):  
R. XIA ◽  
S. CHEN ◽  
W. ZHANG ◽  
Y. CHEN ◽  
R. ZHU ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Bide Liu ◽  
Xun Li ◽  
Jiuzhi Li ◽  
Hongyong Jin ◽  
Hongliang Jia ◽  
...  

Background. Postoperative early biochemical recurrence (BCR) was an essential indicator for recurrence and distant metastasis of prostate cancer (PCa). The aim of this study was to construct a cancer stem cell- (CSC-) associated gene set-based signature to identify a subgroup of PCa patients who are at high risk of early BCR. Methods. The PCa dataset from The Cancer Genome Atlas (TCGA) was randomly separated into discovery and validation set. Patients in discovery set were divided into early BCR group and long-term survival group. Propensity score matching analysis and differentially expressed gene selection were used to identify candidate CSC-associated genes. The LASSO Cox regression model was finally performed to filter the most useful prognostic CSC-associated genes for predicting early BCR. Results. By applying the LASSO Cox regression model, we built a thirteen-CSC-associated gene-based early BCR-predicting signature. In the discovery set, patients in high-risk group showed significantly poorer BCR free survival than that patients in low-risk group (HR: 4.91, 95% CI: 2.75–8.76, P < 0.001 ). The results were further validated in the internal validation set (HR: 2.99, 95% CI: 1.34–6.70, P = 0.005 ). Time-dependent ROC at 1 year suggested that the CSC gene signature ( AUC = 0.800 ) possessed better predictive value than any other clinicopathological features in the entire TCGA cohort. Additionally, survival decision curve analysis revealed a considerable clinical usefulness of the CSC gene signature. Conclusions. We successfully developed a CSC-associated gene set-based signature that can accurately predict early BCR in PCa cancer.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jian-Xian Lin ◽  
Zu-Kai Wang ◽  
Wei Wang ◽  
Jacopo Desiderio ◽  
Jian-Wei Xie ◽  
...  

Abstract Background Most lymph node metastasis (LNM) models for early gastric cancer (EGC) include lymphovascular invasion (LVI) as a predictor. However, LVI must be confirmed by postoperative pathology. In this study, we aimed to develop a model for predicting the risk of LNM/LVI in EGC using preoperative factors. Methods EGC patients who underwent radical gastrectomy at Fujian Medical University Union Hospital and Sun Yat-sen University Cancer Center (n = 1460) were selected as the training set. The risk factors of LNM/LVI were investigated. Data from the International study group on Minimally Invasive surgery for GASTRIc Cancer trial (n = 172) were selected as the validation set. Results In the training set, the incidence of LNM/LVI was 21.6%. The 5-year cancer-specific survival rates of patients with and without LNM/LVI were 92.4 and 95.0%, respectively, with significant difference (P = 0.030). Multivariable logistic regression analysis showed that the four independent risk factors for LNM/LVI were female, tumor larger than 20 mm, submucosal invasion and undifferentiated tumor histological type (all P <  0.05); the area under the curve (AUC) was 0.694 (95% confidence interval [CI]: 0.659–0.730). Patients were divided into low-risk, intermediate-risk, high-risk and extremely high-risk groups by recursive partitioning analysis; the incidences of LNM/LVI were 5.4, 12.6, 24.2 and 37.8%, respectively (P <  0.001). The AUC of the validation set was 0.796 (95%CI, 0.662–0.851) and the predictive performance of the LNM/LVI risk in the validation set was consistent with that in the training set. Conclusions The risk of LNM/LVI in differentiated mucosal EGC is low, which indicated that endoscopic resection is a treatment option. The risk of LNM/LVI in undifferentiated mucosal EGC and submucosa EGC are high and gastrectomy with lymph node dissection is suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ziming Hou ◽  
Jun Yang ◽  
Hao Wang ◽  
Dongyuan Liu ◽  
Hongbing Zhang

Objective. This study aimed to screen prognostic gene signature of glioblastoma (GBM) to construct prognostic model.Methods. Based on the GBM information in the Cancer Genome Atlas (TCGA, training set), prognostic genes (Set X) were screened by Cox regression. Then, the optimized prognostic gene signature (Set Y) was further screened by the Cox-Proportional Hazards (Cox-PH). Next, two prognostic models were constructed: model A was based on the Set Y; model B was based on part of the Set X. The samples were divided into low- and high-risk groups according to the median prognosis index (PI). GBM datasets in Gene Expression Ominous (GEO, GSE13041) and Chinese Glioma Genome Atlas (CGGA) were used as the testing datasets to confirm the prognostic models constructed based on TCGA.Results. We identified that the prognostic 14-gene signature was significantly associated with the overall survival (OS) in the TCGA. In model A, patients in high- and low-risk groups showed the significantly different OS (P = 7.47 × 10−9, area under curve (AUC) 0.995) and the prognostic ability were also confirmed in testing sets (P=0.0098 and 0.037). The model B in training set was significant but failed in testing sets.Conclusion. The prognostic model which was constructed based on the prognostic 14-gene signature presented a high predictive ability for GBM. The 14-gene signature may have clinical implications in the subclassification of GBM.


Sign in / Sign up

Export Citation Format

Share Document