scholarly journals A Potential Prognostic Gene Signature for Predicting Survival for Glioblastoma Patients

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ziming Hou ◽  
Jun Yang ◽  
Hao Wang ◽  
Dongyuan Liu ◽  
Hongbing Zhang

Objective. This study aimed to screen prognostic gene signature of glioblastoma (GBM) to construct prognostic model.Methods. Based on the GBM information in the Cancer Genome Atlas (TCGA, training set), prognostic genes (Set X) were screened by Cox regression. Then, the optimized prognostic gene signature (Set Y) was further screened by the Cox-Proportional Hazards (Cox-PH). Next, two prognostic models were constructed: model A was based on the Set Y; model B was based on part of the Set X. The samples were divided into low- and high-risk groups according to the median prognosis index (PI). GBM datasets in Gene Expression Ominous (GEO, GSE13041) and Chinese Glioma Genome Atlas (CGGA) were used as the testing datasets to confirm the prognostic models constructed based on TCGA.Results. We identified that the prognostic 14-gene signature was significantly associated with the overall survival (OS) in the TCGA. In model A, patients in high- and low-risk groups showed the significantly different OS (P = 7.47 × 10−9, area under curve (AUC) 0.995) and the prognostic ability were also confirmed in testing sets (P=0.0098 and 0.037). The model B in training set was significant but failed in testing sets.Conclusion. The prognostic model which was constructed based on the prognostic 14-gene signature presented a high predictive ability for GBM. The 14-gene signature may have clinical implications in the subclassification of GBM.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jimin He ◽  
Chun Zeng ◽  
Yong Long

Glioma is a frequently seen primary malignant intracranial tumor, characterized by poor prognosis. The study is aimed at constructing a prognostic model for risk stratification in patients suffering from glioma. Weighted gene coexpression network analysis (WGCNA), integrated transcriptome analysis, and combining immune-related genes (IRGs) were used to identify core differentially expressed IRGs (DE IRGs). Subsequently, univariate and multivariate Cox regression analyses were utilized to establish an immune-related risk score (IRRS) model for risk stratification for glioma patients. Furthermore, a nomogram was developed for predicting glioma patients’ overall survival (OS). The turquoise module ( cor = 0.67 ; P < 0.001 ) and its genes ( n = 1092 ) were significantly pertinent to glioma progression. Ultimately, multivariate Cox regression analysis constructed an IRRS model based on VEGFA, SOCS3, SPP1, and TGFB2 core DE IRGs, with a C-index of 0.811 (95% CI: 0.786-0.836). Then, Kaplan-Meier (KM) survival curves revealed that patients presenting high risk had a dismal outcome ( P < 0.0001 ). Also, this IRRS model was found to be an independent prognostic indicator of gliomas’ survival prediction, with HR of 1.89 (95% CI: 1.252-2.85) and 2.17 (95% CI: 1.493-3.14) in the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets, respectively. We established the IRRS prognostic model, capable of effectively stratifying glioma population, convenient for decision-making in clinical practice.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengyu Fang ◽  
Sumei Xu ◽  
Yiwen Xie ◽  
Wenxi Yan

Abstract Background Colon cancer is a worldwide leading cause of cancer-related mortality, and the prognosis of colon cancer is still needed to be improved. This study aimed to construct a prognostic model for predicting the prognosis of colon cancer. Methods The gene expression profile data of colon cancer were obtained from the TCGA, GSE44861, and GSE44076 datasets. The WGCNA module genes and common differentially expressed genes (DEGs) were used to screen out the prognosis-associated DEGs, which were used to construct a prognostic model. The performance of the prognostic model was assessed and validated in the TCGA training and microarray validation sets (GSE38832 and GSE17538). At last, the model and prognosis-associated clinical factors were used for the construction of the nomogram. Results Five colon cancer-related WGCNA modules (including 1160 genes) and 1153 DEGs between tumor and normal tissues were identified, inclusive of 556 overlapping DEGs. Stepwise Cox regression analyses identified there were 14 prognosis-associated DEGs, of which 12 DEGs were included in the optimized prognostic gene signature. This prognostic model presented a high forecast ability for the prognosis of colon cancer both in the TCGA training dataset and the validation datasets (GSE38832 and GSE17538; AUC > 0.8). In addition, patients’ age, T classification, recurrence status, and prognostic risk score were associated with the prognosis of TCGA patients with colon cancer. The nomogram was constructed using the above factors, and the predictive 3- and 5-year survival probabilities had high compliance with the actual survival proportions. Conclusions The 12-gene signature prognostic model had a high predictive ability for the prognosis of colon cancer.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5837
Author(s):  
Changwu Wu ◽  
Siming Gong ◽  
Georg Osterhoff ◽  
Nikolas Schopow

Soft tissue sarcomas (STS), a group of rare malignant tumours with high tissue heterogeneity, still lack effective clinical stratification and prognostic models. Therefore, we conducted this study to establish a reliable prognostic gene signature. Using 189 STS patients’ data from The Cancer Genome Atlas database, a four-gene signature including DHRS3, JRK, TARDBP and TTC3 was established. A risk score based on this gene signature was able to divide STS patients into a low-risk and a high-risk group. The latter had significantly worse overall survival (OS) and relapse free survival (RFS), and Cox regression analyses showed that the risk score is an independent prognostic factor. Nomograms containing the four-gene signature have also been established and have been verified through calibration curves. In addition, the predictive ability of this four-gene signature for STS metastasis free survival was verified in an independent cohort (309 STS patients from the Gene Expression Omnibus database). Finally, Gene Set Enrichment Analysis indicated that the four-gene signature may be related to some pathways associated with tumorigenesis, growth, and metastasis. In conclusion, our study establishes a novel four-gene signature and clinically feasible nomograms to predict the OS and RFS. This can help personalized treatment decisions, long-term patient management, and possible future development of targeted therapy.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Kewei Xiong ◽  
Fengming Liu ◽  
Xiangpan Li

Abstract Objective: To construct a novel prognostic model of immune-related lncRNA (irlncRNA) pairs in clear cell renal cell carcinoma (ccRCC). Methods: RNA-seq and clinical data were retrieved from The Cancer Genome Atlas (TCGA). Differentially expressed irlncRNAs (DEirlncRNAs) were obtained by co-expression strategy with immune genes. A 0-1 matrix was constructed according to DEirlncRNAs relevant expression levels. Univariate cox regression was used to select potential target pairs. Lasso regression with cross validation and multivariate cox regression were carried out to extract the final biomarker pairs for risk score calculation. Through calculating the optimal cutoff of AUCs, patients were divided into high and low risk group. Model validation was conducted by independent prognostic analysis, survival analysis, tumor-infiltrating and chemosensitivity analysis. Results: A total of 42 DEirlncRNAs were identified and 12 target pairs were included to construct the final model. The risk score were both significantly different according to univariate (p<0.001, HR=1.391, 95%CI [1.313–1.475]) and multivariate cox regression (p<0.001, HR=1.3104, 95%CI [1.227-1.399]). The AUC reached 0.765 at 1-year, 0.724 at 3-year and 0.785 at 5-year. Patients in the high-risk group had significantly poor survival, higher level of CD8+T infiltration, lower drug sensitivity of sunitinib and temsirolimus but higher sensitivity of lapatinib and pazopanib.Conclusion: The novel prognostic model constructed by paring irlncRNAs showed an effective clinical prediction in ccRCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kebing Huang ◽  
Xiaoyu Yue ◽  
Yinfei Zheng ◽  
Zhengwei Zhang ◽  
Meng Cheng ◽  
...  

Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Yalin Li ◽  
Peixian Zheng ◽  
Xianquan Zhan

BackgroundCancer stem cells (CSCs) refer to cells with self-renewal capability in tumors. CSCs play important roles in proliferation, metastasis, recurrence, and tumor heterogeneity. This study aimed to identify immune-related gene-prognostic models based on stemness index (mRNAsi) in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively.MethodsX-tile software was used to determine the best cutoff value of survival data in LUAD and LUSC based on mRNAsi. Tumor purity and the scores of infiltrating stromal and immune cells in lung cancer tissues were predicted with ESTIMATE R package. Differentially expressed immune-related genes (DEIRGs) between higher- and lower-mRNAsi subtypes were used to construct prognostic models.ResultsmRNAsi was negatively associated with StromalScore, ImmuneScore, and ESTIMATEScore, and was positively associated with tumor purity. LUAD and LUSC samples were divided into higher- and lower-mRNAsi groups with X-title software. The distribution of immune cells was significantly different between higher- and lower-mRNAsi groups in LUAD and LUSC. DEIRGs between those two groups in LUAD and LUSC were enriched in multiple cancer- or immune-related pathways. The network between transcriptional factors (TFs) and DEIRGs revealed potential mechanisms of DEIRGs in LUAD and LUSC. The eight-gene-signature prognostic model (ANGPTL5, CD1B, CD1E, CNTFR, CTSG, EDN3, IL12B, and IL2)-based high- and low-risk groups were significantly related to overall survival (OS), tumor microenvironment (TME) immune cells, and clinical characteristics in LUAD. The five-gene-signature prognostic model (CCL1, KLRC3, KLRC4, CCL23, and KLRC1)-based high- and low-risk groups were significantly related to OS, TME immune cells, and clinical characteristics in LUSC. These two prognostic models were tested as good ones with principal components analysis (PCA) and univariate and multivariate analyses. Tumor T stage, pathological stage, or metastasis status were significantly correlated with DEIRGs contained in prognostic models of LUAD and LUSC.ConclusionCancer stemness was not only an important biological process in cancer progression but also might affect TME immune cell infiltration in LUAD and LUSC. The mRNAsi-related immune genes could be potential biomarkers of LUAD and LUSC. Evaluation of integrative characterization of multiple immune-related genes and pathways could help to understand the association between cancer stemness and tumor microenvironment in lung cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zaisheng Ye ◽  
Miao Zheng ◽  
Yi Zeng ◽  
Shenghong Wei ◽  
Yi Wang ◽  
...  

Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal, greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and immune microenvironment interactions may help overcome this obstacle. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. Tumor purity and infiltrating immune cells in stomach adenocarcinoma (STAD) tissues were predicted using the ESTIMATE R package and CIBERSORT method, respectively. Differentially expressed genes (DEGs) between the high and low mRNAsi groups were used to construct prognostic models with weighted gene co-expression network analysis (WGCNA) and Lasso regression. The association between cancer stemness, gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs were identified between the high and low mRNAsi groups. DEGs in the brown (containing 19 genes) and blue (containing 209 genes) co-expression modules were used to perform survival analysis based on Cox regression. A nine-gene signature prognostic model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were significantly related to overall survival, clinical characteristics, tumor microenvironment immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide a prognostic model and highlight potential mechanisms and associated factors (immune microenvironment and mutation status) useful for targeting CSCs.


2021 ◽  
Author(s):  
Li Canxuan ◽  
Long Dan

Aims: To investigate the prognostic values and potential mechanisms of ferroptosis-related genes in clear cell renal cell carcinoma. Methods: Univariate Cox, least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were employed to identify prognosis-related hub ferroptosis-related genes and establish a prognostic model. Results: The authors established a novel clinical predictive model based on seven hub ferroptosis-related genes in The Cancer Genome Atlas training cohort (n = 374) that was verified in the testing cohort (n = 156) and the entire group (n = 530). Functional analysis indicated that several carcinogenic pathways were enriched. Tumor-infiltrating cells and immunosuppressive molecules were significantly different between the two risk groups. Conclusion: Collectively, the authors successfully constructed a novel ferroptosis-related risk signature that was significantly associated with the prognosis of clear cell renal cell carcinoma.


2020 ◽  
Vol 14 (18) ◽  
pp. 1717-1731
Author(s):  
Song Ou-Yang ◽  
Ji-Hong Liu ◽  
Qin-Zhang Wang

Aim: To study the expression patterns and prognostic value of the m6A-associated regulators in prostate adenocarcinoma (PRAD). Materials & methods: The mRNA expression and clinical data were downloaded from ‘The Cancer Genome Atlas database’. The m6A-associated variants were downloaded from m6AVar database, and combined with 14 common m6A regulators for subsequent analysis. One-way analysis of variance, univariate Cox regression analysis and least absolute shrinkage and selection operator algorithm were successively applied to obtain the ultimate regulators and prognostic model. Finally, consensus clustering, protein–protein interaction (PPI) and enrichment analysis were performed. Result: Nine regulators were obtained. PRAD patients could be classified into two risk groups and subclasses with significant survival differences by the prognostic model and consensus clustering, respectively. Conclusion: All these nine regulators were related to prognosis in PRAD, and could be used as clinical biomarkers.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weifeng Zheng ◽  
Chaoying Chen ◽  
Jianghao Yu ◽  
Chengfeng Jin ◽  
Tiemei Han

Abstract Background The essence of energy metabolism has spread to the field of esophageal cancer (ESC) cells. Herein, we tried to develop a prognostic prediction model for patients with ESC based on the expression profiles of energy metabolism associated genes. Materials and methods The overall survival (OS) predictive gene signature was developed, internally and externally validated based on ESC datasets including The Cancer Genome Atlas (TCGA), GSE54993 and GSE19417 datasets. Hub genes were identified in each energy metabolism related molecular subtypes by weighted gene correlation network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. Kaplan-Meier curve, time-dependent receiver operating characteristic (ROC) curve, nomogram, decision curve analysis (DCA), and restricted mean survival time (EMST) were used to assess the performance of the gene signature. Results A novel energy metabolism based eight-gene signature (including UBE2Z, AMTN, AK1, CDCA4, TLE1, FXN, ZBTB6 and APLN) was established, which could dichotomize patients with significantly different OS in ESC. The eight-gene signature demonstrated independent prognostication potential in patient with ESC. The prognostic nomogram constructed based on the gene signature showed excellent predictive performance, whose robustness and clinical usability were higher than three previous reported prognostic gene signatures. Conclusions Our study established a novel energy metabolism based eight-gene signature and nomogram to predict the OS of ESC, which may help in precise clinical management.


Sign in / Sign up

Export Citation Format

Share Document