scholarly journals Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Alberto Aranza-Martínez ◽  
Julio Sánchez-Pérez ◽  
Luis Brito-Elias ◽  
César López-Camarillo ◽  
David Cantú de León ◽  
...  

The resistance that Triple-Negative Breast Cancer (TNBC), the most aggressive breast cancer subtype, develops against radiotherapy is a complex phenomenon involving several regulators of cell metabolism and gene expression; understanding it is the only way to overcome it. We focused this review on the contribution of the two leading classes of regulatory non-coding RNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), against ionizing radiation-based therapies. We found that these regulatory RNAs are mainly associated with DNA damage response, cell death, and cell cycle regulation, although they regulate other processes like cell signaling and metabolism. Several regulatory RNAs regulate multiple pathways simultaneously, such as miR-139-5p, the miR-15 family, and the lncRNA HOTAIR. On the other hand, proteins such as CHK1 and WEE1 are targeted by several regulatory RNAs simultaneously. Interestingly, the study of miRNA/lncRNA/mRNA regulation axes increases, opening new avenues for understanding radioresistance. Many of the miRNAs and lncRNAs that we reviewed here can be used as molecular markers or targeted by upcoming therapeutic options, undoubtedly contributing to a better prognosis for TNBC patients.

2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Exian Mou ◽  
Hao Wang

Abstract Triple-negative breast cancer (TNBC) is a subtype of aggressive breast cancer with high recurrence and poor survival. Emerging evidence has indicated that long non-coding RNAs (lncRNAs) play pivotal roles in the development and progression of multiple cancers. Although there are substantial studies revealing that lung cancer-associated transcript 1 (LUCAT1) functions as a tumor promotor in various human cancers, the molecular mechanism of LUCAT1 in TNBC remains largely to be explored. In our study, we identified that LUCAT1 expression was dramatically enhanced in TNBC samples and cells. High LUCAT1 expression was strongly associated with advanced stages and poor prognosis of TNBC. LUCAT1 contributed to TNBC development through accelerating cell proliferation, cell cycle progression and metastasis as well as attenuating cell apoptosis. Moreover, miR-5702 was proved to directly bind to LUCAT1 and be negatively modulated by LUCAT1. Knockdown of miR-5702 reversed the suppressing influences of LUCAT1 depletion on TNBC progression. In conclusion, it was the first investigation to shed light on the significant function and underlying regulatory mechanism of LUCAT1 in TNBC tumorigenesis. We validated that LUCAT1 induced tumorigenesis and metastasis of TNBC via miR-5702, which provided clues for improving the treatment of TNBC.


2020 ◽  
Vol 48 (6) ◽  
pp. 2791-2810
Author(s):  
Taruna Rajagopal ◽  
Srikanth Talluri ◽  
Sivaramakrishnan Venkatabalasubramanian ◽  
Nageswara Rao Dunna

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma J. Mah ◽  
Austin E. Y. T. Lefebvre ◽  
Gabrielle E. McGahey ◽  
Albert F. Yee ◽  
Michelle A. Digman

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 506 ◽  
Author(s):  
Lamyae El Khalki ◽  
Virginie Maire ◽  
Thierry Dubois ◽  
Abdelmajid Zyad

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Non-available targeted therapy for TNBC represents its biggest treatment challenge. Thus, finding new promising effective drugs is urgently needed. In the present study, we investigated how berberine, a natural isoquinoline, impairs the survival of TNBC cells in both cellular and molecular levels. Our experimental model was based on the use of eight TNBC cell lines: MDA-MB-468, MDA-MB-231, HCC70, HCC38, HCC1937, HCC1143, BT-20, and BT-549. Berberine was cytotoxic against all treated TNBC cell lines. The most sensitive cell lines were HCC70 (IC50 = 0.19 µM), BT-20 (IC50 = 0.23 µM) and MDA-MB-468 (IC50 = 0.48 µM). Using flow cytometry techniques, berberine, at 0.5 and 1 µM for 120 and 144 h, not only induced cell cycle arrest, at G1 and/or G2/M phases, but it also triggered significant apoptosis. At the molecular level, these results are consistent with the expression of their related proteins using Western blot assays. Interestingly, while berberine was cytotoxic against TNBC cells, it had no effect on the viability of normal human breast cells MCF10A cultured in a 3D matrigel model. These results suggest that berberine may be a good potential candidate for TNBC drug development.


Author(s):  
Melinda Telli

Although characterization of triple-negative breast cancer (TNBC) using mRNA gene expression profiling has certainly provided important insights, the concept of targeting DNA repair defects with DNA damaging therapeutics such as platinum in TNBC has been advanced from studies focusing on both germline and somatic genetic alterations associated with this breast cancer subtype. A growing body of preclinical and clinical data suggests that platinum chemotherapy has a potential role to play in the treatment of both early-stage and advanced TNBC, though results are not yet definitive. Randomized clinical trials that incorporate biomarkers of response, including germline BRCA1 and BRCA2 mutation status as well as tumor-based measures of genomic “scarring” resulting from the accumulation of DNA damage in tumors with deficient repair capacity, will help to clarify the optimal use and activity of platinum in TNBC.


Genes ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Yan Guo ◽  
Hui Yu ◽  
Jing Wang ◽  
Quanhu Sheng ◽  
Shilin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document