scholarly journals Complex Regional Pain Syndrome. A Comprehensive Review on Neuroplastic Changes Supporting the Use of Non-invasive Neurostimulation in Clinical Settings

2021 ◽  
Vol 2 ◽  
Author(s):  
Andrea Zangrandi ◽  
Fannie Allen Demers ◽  
Cyril Schneider

Background: Complex regional pain syndrome (CRPS) is a rare debilitating disorder characterized by severe pain affecting one or more limbs. CRPS presents a complex multifactorial physiopathology. The peripheral and sensorimotor abnormalities reflect maladaptive changes of the central nervous system. These changes of volume, connectivity, activation, metabolism, etc., could be the keys to understand chronicization, refractoriness to conventional treatment, and developing more efficient treatments.Objective: This review discusses the use of non-pharmacological, non-invasive neurostimulation techniques in CRPS, with regard to the CRPS physiopathology, brain changes underlying chronicization, conventional approaches to treat CRPS, current evidence, and mechanisms of action of peripheral and brain stimulation.Conclusion: Future work is warranted to foster the evidence of the efficacy of non-invasive neurostimulation in CRPS. It seems that the approach has to be individualized owing to the integrity of the brain and corticospinal function. Non-invasive neurostimulation of the brain or of nerve/muscles/spinal roots, alone or in combination with conventional therapy, represents a fertile ground to develop more efficient approaches for pain management in CRPS.

2020 ◽  
Vol 33 (2) ◽  
pp. 131-137
Author(s):  
Francis Sahngun Nahm ◽  
Jae-Sung Lee ◽  
Pyung-Bok Lee ◽  
Eunjoo Choi ◽  
Woong Ki Han ◽  
...  

Author(s):  
Mitsuo Tonoike

Though olfaction is one of the necessary senses and indispensable for the maintenance of the life of the animal, the mechanism of olfaction had not yet been understood well compared with other sensory systems such as vision and audition. However, recently, the most basic principle of “signal transduction on the reception and transmission for the odor” has been clarified. Therefore, the important next problem is how the information of odors about is processed in the Central Nervous System (CNS) and how odor is perceived in the human brain. In this chapter, the basic olfactory systems in animal and human are described and examples such as “olfactory acuity, threshold, adaptation, and olfactory disorders” are discussed. The mechanism of olfactory information processing is described under the results obtained by using a few new non-invasive measuring methods. In addition, from a few recent studies, it is shown that olfactory neurophysiological information is passing through some deep central regions of the brain before finally being processed in the orbito-frontal areas.


1983 ◽  
Vol 61 (7) ◽  
pp. 579-593 ◽  
Author(s):  
W. D. Ruwe ◽  
W. L. Veale ◽  
K. E. Cooper

The neural elements of the rostral diencephalon in the mammal have been implicated in the regulation of body temperature. Moreover, it may be the neural elements within this region of the brain which activate the febrile mechanisms in response to pyrogen. Is it possible that the neuropeptides located within this area of the brain serve as neurochemical intermediaries involved in temperature regulation, fever, and (or) antipyresis? Central administration of several neuropeptides can elicit marked changes in the core temperature of an animal. Although most of these purative neuroregulators exert only a very minor influence on thermoregulation, a small number of the neuropeptides have been shown to have a profound effect on the system controlling this basic vegetative function. One of these peptides, arginine vasopressin (AVP) may play a role as an endogenous antipyretic. The neuroanatomical localization of this peptide, as well as its axonal projections, are consistent with such a role for this neurohypophyseal peptide in the mediation of antipyresis. In addition, current evidence suggests that AVP does function as a neurotransmitter. Examination of the febrile response to pyrogen in both the periparturient animal and the neonate indicates that an elevation in plasma levels of AVP is closely correlated with the diminution in the febrile response. Also, when AVP is perfused into punctate regions of the brain, a pyrogen-induced fever may be markedly suppressed. AVP appears to act primarily within the septal area, 2- to 3-mm rostral to the anterior commissure. During the development of fever, the release of AVP is altered within these same loci. As body temperature decreases during the febrile state, there is a concomitant increase in the amount of AVP released into the extracellular fluid of these septal sites. Very recent findings suggest that AVP may have additional central neurochemical functions. For example, this peptide may be involved in the etiology of some forms of convulsive disorders. The precise manner in which body temperature is regulated by the central nervous system normally and during fever is not well understood. In particular, the central mechanism of action of AVP in these processes remains to be determined. Currently, it is clear that the critical central mechanisms which are active in thermoregulation and fever are quite complex and will require many more years of investigation before the exact role of each can be enunciated.


2016 ◽  
Vol 20 (10) ◽  
pp. 1622-1633 ◽  
Author(s):  
G.A.J. van Velzen ◽  
S.A.R.B. Rombouts ◽  
M.A. van Buchem ◽  
J. Marinus ◽  
J.J. van Hilten

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1479
Author(s):  
Sinaye Mhambi ◽  
David Fisher ◽  
Moise B. Tchoula Tchokonte ◽  
Admire Dube

The anatomical structure of the brain at the blood–brain barrier (BBB) creates a limitation for the movement of drugs into the central nervous system (CNS). Drug delivery facilitated by magneto-electric nanoparticles (MENs) is a relatively new non-invasive approach for the delivery of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the permeability of the cells of the BBB by inducing electroporation. MENs can be applied to deliver antiretrovirals and antibiotics towards the treatment of human immunodeficiency virus (HIV) and tuberculosis (TB) infections in the CNS. This review focuses on the drug permeation challenges and reviews the application of MENs for drug delivery for these diseases. We conclude that MENs are promising systems for effective CNS drug delivery and treatment for these diseases, however, further pre-clinical and clinical studies are required to achieve translation of this approach to the clinic.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-19
Author(s):  
Mark Tommerdahl ◽  
Rachel Lensch ◽  
Eric Francisco ◽  
Jameson Holden ◽  
Oleg Favorov

Background. A large number of neurological disorders (neurodegenerative, neurodevelopmental or trauma induced) are difficult to diagnose or assess, thus limiting treatment efficacy.  Existing solutions and products for this need are costly, extremely slow, often invasive, and in many cases fail to definitively (and quantitatively) diagnose or assess treatment.  Advances. For the past decade, we have been developing what we consider to be an innovative low-cost sensory testing device (the Brain Gauge) that non-invasively assesses the central nervous system (CNS).  The objective has been to develop an inexpensive, highly accurate, simple to use device to assess brain health in all environments: in the clinic, at home, at work, on the battlefield or sports field.  The device is non-invasive, generates no harmful radiation, requires no chemicals nor exposure to dangerous substances.  The device does not require expensive disposables and does not involve the use of samples that require physical processing in a central laboratory.  Tests can be administered in a matter of minutes and do not require expert oversight.  The most recent versions of the technology are easily portable; the device is the size and shape of a computer mouse.  As such, the technology is particularly well suited to non-drug, non-radiation based alternative and in-home care.  The device and methods have been used in numerous studies of neurological cohorts that are often considered difficult to diagnose or assess objectively. Based on over a decade of studies (currently an ontological database of over 10,000 subjects and over 60 peer reviewed publications), the system can be used to enable clinicians to have a much better view of a patient’s CNS health status.  The diagnostic system delivers a battery of sensory based (tactile) tests that are conducted rapidly – much like an eye exam with verbal feedback – and the tests were  designed to be predominantly impacted by specific mechanisms of CNS information processing.  Because of the broad diversity of the questions addressed by the different metrics, combining the metrics allows for the generation of a unique individual CNS profile that appears to be very sensitive to neurological status. Outlook.  A review of the development of the system and the application of the method in basic and clinical research is provided to give readers an insight into why the methods were developed, how the methods work and what the methods can be optimally utilized for. The methods provide an objective means for clinicians and researchers to track brain health, and examples of case studies of tracking recovery from concussion as well as response to treatments are provided.


Author(s):  
Walter Glannon

I discuss ethical issues relating to interventions other than intracranial surgery and psychopharmacology for psychiatric disorders. I question the distinction between “invasive” and “non-invasive” techniques applying electrical stimulation to the brain, arguing that this should be replaced by a distinction between more and less invasive techniques. I discuss electroconvulsive therapy (ECT); it can be a relatively safe and effective treatment for some patients with depression. I consider transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS); the classification of these techniques as non-invasive may lead to underestimation of their risks. I discuss how placebos can justifiably be prescribed non-deceptively and even deceptively in clinical settings. An analysis of neurofeedback as the neuromodulating technique most likely to promote autonomy/control for some conditions follows. Finally, I examine biomarkers identified through genetic screening and neuroimaging; they might contribute to more accurate prediction and diagnosis, more effective treatment, and possibly prevention of psychiatric disorders.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 598 ◽  
Author(s):  
Jeffrey J. Lochhead ◽  
Thomas P. Davis

One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states.


Sign in / Sign up

Export Citation Format

Share Document