Psychiatric Neuroethics II

Author(s):  
Walter Glannon

I discuss ethical issues relating to interventions other than intracranial surgery and psychopharmacology for psychiatric disorders. I question the distinction between “invasive” and “non-invasive” techniques applying electrical stimulation to the brain, arguing that this should be replaced by a distinction between more and less invasive techniques. I discuss electroconvulsive therapy (ECT); it can be a relatively safe and effective treatment for some patients with depression. I consider transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS); the classification of these techniques as non-invasive may lead to underestimation of their risks. I discuss how placebos can justifiably be prescribed non-deceptively and even deceptively in clinical settings. An analysis of neurofeedback as the neuromodulating technique most likely to promote autonomy/control for some conditions follows. Finally, I examine biomarkers identified through genetic screening and neuroimaging; they might contribute to more accurate prediction and diagnosis, more effective treatment, and possibly prevention of psychiatric disorders.

2021 ◽  
pp. 405-420
Author(s):  
Georg Northoff

Neuroethics, located at the interface of conceptual and empirical dimensions, carries major implications for psychiatry, such as the neuroscientific basis of ethical concepts as moral agency. Drawing on data in neuroscience, this chapter highlights issues central to psychiatric ethics. First, it addresses a reductionistic model of the brain, often conceived as purely neuronal, and then it discusses empirical data suggesting that the brain’s activity is strongly aligned to its respective social (e.g., relation to others) and ecological (e.g., relation to the environment and nature) contexts; this implies a relational rather than reductionist model. Second, it suggests that self (e.g., the experience or sense of a self) and personhood (e.g., the person as existent independent of experience) must also be understood in such a social and ecological and, therefore, relational and spatio-temporal sense. Ethical concepts like agency, therefore, cannot be limited solely to the person and brain, but must rather be understood in a relational and neuro-ecological/social way. Third, it discusses deep brain stimulation as a treatment that promotes enhancement. In sum, this chapter presents findings in neuroscience that carry major implications for our view of brain, mental features, psychiatric disorders, and ethical issues like agency, responsibility, and enhancement.


2020 ◽  
Author(s):  
Florian H. Kasten ◽  
Christoph S. Herrmann

AbstractNon-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. However, their often weak and variable effects have also raised concerns in the scientific community. A possible factor influencing the efficacy of these methods is the dependence on brain-states. Here, we utilized Hidden Markov Models (HMM) to decompose concurrent tACS-magnetoencephalography data into transient brain-states with distinct spatial, spectral and connectivity profiles. We found that out of four spontaneous brain-states only one was susceptible to tACS. No or only marginal effects were found in the remaining states. TACS did not influence the time spent in each state. Our results suggest, that tACS effects may be mediated by a hidden, spontaneous state-dependency and provide novel insights to the changes in oscillatory activity underlying aftereffects of tACS.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Nkafu Bechem Ndemazie ◽  
Andriana Inkoom ◽  
Ellis Fualefeh Morfaw ◽  
Taylor Smith ◽  
Monica Aghimien ◽  
...  

Abstract Drug delivery into the brain has for long been a huge challenge as the blood–brain barrier (BBB) offers great resistance to entry of foreign substances (with drugs inclusive) into the brain. This barrier in healthy individuals is protective to the brain, disallowing noxious substances present in the blood to get to the brain while allowing for the exchange of small molecules into the brain by diffusion. However, BBB is disrupted under certain disease conditions, such as cerebrovascular diseases including acute ischemic stroke and intracerebral hemorrhage, and neurodegenerative disorders including multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and cancers. This review aims to provide a broad overview of present-day strategies for brain drug delivery, emphasizing novel delivery systems. Hopefully, this review would inspire scientists and researchers in the field of drug delivery across BBB to uncover new techniques and strategies to optimize drug delivery to the brain. Considering the anatomy, physiology, and pathophysiological functioning of the BBB in health and disease conditions, this review is focused on the controversies drawn from conclusions of recently published studies on issues such as the penetrability of nanoparticles into the brain, and whether active targeted drug delivery into the brain could be achieved with the use of nanoparticles. We also extended the review to cover novel non-nanoparticle strategies such as using viral and peptide vectors and other non-invasive techniques to enhance brain uptake of drugs. Graphical abstract


2018 ◽  
pp. 1-14
Author(s):  
Walter Glannon

This Introduction describes the book as an analysis and discussion of questions at the intersection of psychiatry, philosophy and law that have arisen from advances in psychiatric research and practice in the last 30 years. After pointing out the extent to which mental illness constitutes the global burden of disease, it outlines a paradigm for major psychiatric conditions as diseases of the brain and mind consisting in a biopsychosocial model in which the DSM-5 and RDoC are complementary frameworks. The Introduction explains psychiatric disorders as disorders of consciousness, memory and will, examines invasive and non-invasive treatments for them, how these treatments affect autonomous agency and the obligations of researchers to subjects participating in psychiatric research. In addition, it explores ethical and legal issues in brain interventions for psychopathy, arguments for and against euthanasia and assisted suicide for psychiatric disorders and how to prevent them.


2021 ◽  
Vol 2 ◽  
Author(s):  
Andrea Zangrandi ◽  
Fannie Allen Demers ◽  
Cyril Schneider

Background: Complex regional pain syndrome (CRPS) is a rare debilitating disorder characterized by severe pain affecting one or more limbs. CRPS presents a complex multifactorial physiopathology. The peripheral and sensorimotor abnormalities reflect maladaptive changes of the central nervous system. These changes of volume, connectivity, activation, metabolism, etc., could be the keys to understand chronicization, refractoriness to conventional treatment, and developing more efficient treatments.Objective: This review discusses the use of non-pharmacological, non-invasive neurostimulation techniques in CRPS, with regard to the CRPS physiopathology, brain changes underlying chronicization, conventional approaches to treat CRPS, current evidence, and mechanisms of action of peripheral and brain stimulation.Conclusion: Future work is warranted to foster the evidence of the efficacy of non-invasive neurostimulation in CRPS. It seems that the approach has to be individualized owing to the integrity of the brain and corticospinal function. Non-invasive neurostimulation of the brain or of nerve/muscles/spinal roots, alone or in combination with conventional therapy, represents a fertile ground to develop more efficient approaches for pain management in CRPS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Md Shale Ahammed ◽  
Sijie Niu ◽  
Md Rishad Ahmed ◽  
Jiwen Dong ◽  
Xizhan Gao ◽  
...  

Non-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum disorders (ASD) is rationally challenging due to the limitations of publicly available datasets. For diagnostic or prognostic tools, functional Magnetic Resonance Imaging (fMRI) exposed affirmation to the biomarkers in neuroimaging research because of fMRI pickup inherent connectivity between the brain and regions. There are profound studies in ASD with introducing machine learning or deep learning methods that have manifested advanced steps for ASD predictions based on fMRI data. However, utmost antecedent models have an inadequacy in their capacity to manipulate performance metrics such as accuracy, precision, recall, and F1-score. To overcome these problems, we proposed an avant-garde DarkASDNet, which has the competence to extract features from a lower level to a higher level and bring out promising results. In this work, we considered 3D fMRI data to predict binary classification between ASD and typical control (TC). Firstly, we pre-processed the 3D fMRI data by adopting proper slice time correction and normalization. Then, we introduced a novel DarkASDNet which surpassed the benchmark accuracy for the classification of ASD. Our model's outcomes unveil that our proposed method established state-of-the-art accuracy of 94.70% to classify ASD vs. TC in ABIDE-I, NYU dataset. Finally, we contemplated our model by performing evaluation metrics including precision, recall, F1-score, ROC curve, and AUC score, and legitimize by distinguishing with recent literature descriptions to vindicate our outcomes. The proposed DarkASDNet architecture provides a novel benchmark approach for ASD classification using fMRI processed data.


Axioms ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Aswathy Sukumaran ◽  
Ajith Abraham

Meningiomas are the most prevalent benign intracranial life-threatening brain tumors, with a life expectancy of a few months in the later stages, so this type of tumor in the brain image should be recognized and detected efficiently. The source of meningiomas is unknown. Radiation exposure, particularly during childhood, is the sole recognized environmental risk factor for meningiomas. The imaging technique of magnetic resonance imaging (MRI) is commonly used to detect most tumor forms as it is a non-invasive and painless method. This study introduces a CNN-HHO integrated automated identification model, which makes use of SeaLion optimization methods for improving overall network optimization. In addition to these techniques, various CNN models such as Resnet, VGG, and DenseNet have been utilized to give an overall influence of CNN with SeaLion in each methodology. Each model is tested on our benchmark dataset for accuracy, specificity, dice coefficient, MCC, and sensitivity, with DenseNet outperforming the other models with a precision of 98%. The proposed methods outperform existing alternatives in the detection of brain tumors, according to the existing experimental findings.


2016 ◽  
Vol 19 (3) ◽  
pp. 184-186
Author(s):  
E. V Lipova ◽  
Sergey I. Surkichin ◽  
G. N Tarasenko

Review of modern non-invasive methods of localizedfat deposits removal, classification of liposuction methods, mechanisms of action are described. The basics of biological effects on tissue, the results of clinical trials, efficiency of the methods are presented. The method of cryolipolysis is described in details.


Sign in / Sign up

Export Citation Format

Share Document