scholarly journals Acetate Downregulates the Activation of NLRP3 Inflammasomes and Attenuates Lung Injury in Neonatal Mice With Bronchopulmonary Dysplasia

2021 ◽  
Vol 8 ◽  
Author(s):  
Qian Zhang ◽  
Xiao Ran ◽  
Yu He ◽  
Qing Ai ◽  
Yuan Shi

Background: Bronchopulmonary dysplasia (BPD) is a common pulmonary complication in preterm infants. Acetate is a metabolite produced by the gut microbiota, and its anti-inflammatory function is well known. The role of acetate in BPD has not been studied. Here, we investigate the effects of acetate on lung inflammation and damage in mice model of BPD.Objective: To investigate the role of acetate in the development of BPD.Methods: C57BL/6 mice were randomly divided into three groups on the 3rd day after birth: room air group, hyperoxia group, and hyperoxia + acetate (250 mM, 0.02 ml/g) group. The expression of inflammatory factors was determined by ELISA and RT-PCR, and NLRP3 and caspase-1 were detected by Western blot. High-throughput sequencing was used to detect bacterial communities in the mice intestines.Results: After acetate treatment, the expression levels of TNF-α, IL-1β, IL-18, NLRP3, and caspase-1 were significantly reduced, while the expression of GPR43 was increased. In the BPD mice treated with acetate, the proportion of Escherichia-Shigella was lower than in placebo-treated BPD mice, while the abundance of Ruminococcus was increased.Conclusions: These results indicate that acetate may regulate intestinal flora and reduce inflammatory reactions and lung injury in BPD. Therefore, acetate may be an effective drug to protect against neonatal BPD.

Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Chen ◽  
Jiuheng Lv ◽  
Yejuan Jia ◽  
Ruiqing Wang ◽  
Zidi Zhang ◽  
...  

In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.


2020 ◽  
Vol 78 (6) ◽  
Author(s):  
Xia Luo ◽  
Bo Xu ◽  
Tianqin Xiong ◽  
Yulin Su ◽  
Chang liu ◽  
...  

ABSTRACT Currently, the potential role of the alterations occurring in the liver immune system and intestinal flora in liver injury remains unknown. Our study aimed to explore the impacts of intestinal microbial barrier damage induced by ceftriaxone on liver immunity. We developed the BALB/c mice model by administering ceftriaxone. The intestinal microbial barrier damage was observed by 16S rRNA, and the pathological changes of intestines and livers were detected by H&E or transmission electron microscope. The activation of immunocytes were tested by Flow Cytometry; the expression of LPS, ALT, AST, IL-6 and TNF-α were detected by Limulus Test or ELISA. Compared to the control, the intestinal microbes significantly decreased in ceftriaxone group. Additionally, the weight of cecum contents increased, the intestinal wall became thinner and the villus in the small intestine and cecum were damaged. The expression of LPS and the ratio of liver lymphocytes were significantly increased. H&E results indicated the structures of liver arose the pathologic changes. Meanwhile, the content of serum ALT, AST, IL-6 and TNF-α increased. Collectively, our study indicates that the damages of gut microbial barrier induced by ceftriaxone prompted activation of immunocytes and release of inflammatory cytokines, which may lead to chronic inflammation in liver.


2016 ◽  
Vol 33 (14) ◽  
pp. 1337-1356 ◽  
Author(s):  
Ram Kalagiri ◽  
Timothy Carder ◽  
Saiara Choudhury ◽  
Niraj Vora ◽  
Amie Ballard ◽  
...  

Background Normal pregnancy relies on a careful balance between immune tolerance and suppression. It is known that strict regulation of maternal immune function, in addition to components of inflammation, is paramount to successful pregnancy, and any imbalance between proinflammatory and anti-inflammatory cytokines and chemokines can lead to aberrant inflammation, often seen in complicated pregnancies. Inflammation in complicated pregnancies is directly associated with increased mortality and morbidity of the mother and offspring. Aberrant inflammatory reactions in complicated pregnancies often lead to adverse outcomes, such as spontaneous abortion, preterm labor, intrauterine growth restriction, and fetal demise. The role of inflammation in different stages of normal pregnancy is reviewed, compared, and contrasted with aberrant inflammation in complicated pregnancies. The complications addressed are preterm labor, pregnancy loss, infection, preeclampsia, maternal obesity, gestational diabetes mellitus, autoimmune diseases, and inflammatory bowel disease. Aim This article examines the role of various inflammatory factors contributing to aberrant inflammation in complicated pregnancies. By understanding the aberrant inflammatory process in complicated pregnancies, novel diagnostic tools and therapeutic interventions for modulating it appropriately can be identified.


Author(s):  
Chenyang Yu ◽  
Caihua Zhang ◽  
Zhihui Kuang ◽  
Qiang Zheng

Abstract Continuous stimulation of inflammation is harmful to tissues of an organism. Inflammatory mediators not only have an effect on metabolic and inflammatory bone diseases but also have an adverse effect on certain genetic and periodontal diseases associated with bone destruction. Inflammatory factors promote vascular calcification in various diseases. Vascular calcification is a pathological process similar to bone development, and vascular diseases play an important role in the loss of bone homeostasis. The NLRP3 inflammasome is an essential component of the natural immune system. It can recognize pathogen-related molecular patterns or host-derived dangerous signaling molecules, recruit, and activate the pro-inflammatory protease caspase-1. Activated caspase-1 cleaves the precursors of IL-1β and IL-18 to produce corresponding mature cytokines or recognizes and cleaves GSDMD to mediate cell pyroptosis. In this review, we discuss the role of NLRP3 inflammasome in bone diseases and vascular calcification caused by sterile or non-sterile inflammation and explore potential treatments to prevent bone loss.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Zhu ◽  
Taocheng Meng ◽  
Aichen Sun ◽  
Jintao Li ◽  
Jinlai Li

Objective. This study aimed to explore the role of angelica polysaccharide (AP) in sepsis-induced acute lung injury (ALI) and its underlying molecular mechanism. Methods. A sepsis model of cecal ligation and puncture (CLP) in male BALB/C mice was used. Then, 24 h after CLP, histopathological changes in lung tissue, lung wet/dry weight ratio, and inflammatory cell infiltration were analyzed. Next, levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18), as well as the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH), were measured to assess the role of AP. The protein expression of NF-κB p65, p-NF-κB p65, IκBα, p-IκBα, nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3), ASC, and caspase-1 was detected by western blot. In addition, the expression of p-NF-κB p65 and NLRP3 was detected by immunohistochemistry. Results. AP treatment ameliorated CLP-induced lung injury and lung edema, as well as decreased the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). AP reduced the levels of TNF-α, IL-1β, IL-6, and IL-18 in BALF, as well as in serum. Moreover, AP decreased MPO activity and MDA content, whereas increased SOD and GSH levels. AP inhibited the expression of p-NF-κB p65, p-IκBα, NLRP3, ASC, and caspase-1, while promoted IκBα expression. Conclusion. This study demonstrated that AP exhibits protective effects against sepsis-induced ALI by inhibiting NLRP3 and NF-κB signaling pathways in mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pan Liu ◽  
Zhengdong Zhang ◽  
Yao Li

Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD) in many developed and developing countries. Pyroptosis is a recently discovered form of programmed cell death (PCD). With progress in research on DKD, researchers have become increasingly interested in elucidating the role of pyroptosis in DKD pathogenesis. This review focuses on the three pathways of pyroptosis generation: the canonical inflammasome, non-canonical inflammasome, and caspase-3-mediated inflammasome pathways. The molecular and pathophysiological mechanisms of the pyroptosis-related inflammasome pathway in the development of DKD are summarized. Activation of the diabetes-mediated pyroptosis-related inflammasomes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), Toll-like receptor 4 (TLR4), caspase-1, interleukin (IL)-1β, and the IL-18 axis, plays an essential role in DKD lesions. By inhibiting activation of the TLR4 and NLRP3 inflammasomes, the production of caspase-1, IL-1β, and IL-18 is inhibited, thereby improving the pathological changes associated with DKD. Studies using high-glucose–induced cell models, high-fat diet/streptozotocin-induced DKD animal models, and human biopsies will help determine the spatial and temporal expression of DKD inflammatory components. Recent studies have confirmed the relationship between the pyroptosis-related inflammasome pathway and kidney disease. However, these studies are relatively superficial at present, and the mechanism needs further elucidation. Linking these findings with disease activity and prognosis would provide new ideas for DKD research.


Sign in / Sign up

Export Citation Format

Share Document