scholarly journals Intrauterine Hypoxia Changed the Colonization of the Gut Microbiota in Newborn Rats

2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Sun ◽  
Lei Li ◽  
Jiayu Song ◽  
Wei Mao ◽  
Kaihao Xiao ◽  
...  

Background: Accumulating evidence suggests a connection between the gut microbiota and neonatal diseases. Hypoxia may play an important role in the intestinal lesions in neonates.Objective: This study aims to determine whether the gut microbiota differs between intrauterine hypoxic rats and healthy controls and to identify the factors that influence the changes in the gut microbiota.Methods: We constructed an intrauterine hypoxia model in rats and collected the intestinal contents of intrauterine hypoxic newborn rats and normal newborn rats within 4 h and on the seventh day after birth. They were divided them into the intrauterine hypoxia first-day group (INH1), intrauterine hypoxia seventh-day group (INH7), normal first-day group (NOR1), and normal seventh-day group (NOR7). The contents of the intestines were sequenced with 16S rRNA sequencing, the sequencing results were analyzed for biological information, and the differences in the diversity, richness, and individual taxa among the groups were analyzed.Results: The abundance of the gut microbiota of neonatal rats with intrauterine hypoxia was higher than that of the control group rats. Intrauterine hypoxia altered the structural composition of the gut microbiota in neonatal rats. The INH1 group showed increased species richness, phylogenetic diversity, and β-diversity, and altered relative abundance in several taxa compared to those in the control group. The differences in the microbiota among the four groups were significantly higher than those within the group, and the differences in the abundance and diversity of the INH7 and NOR7 groups decreased after 7 days of suckling. Functional analysis based on the Cluster of Orthologous Groups (COG) suggested that 23 functional COG categories. There was no significant difference in the functional categories between the hypoxia group and the normal group.Conclusion: Intrauterine hypoxia changed the initial colonization of the gut microbiota in neonatal rats. It could increase the species richness and β-diversity of the gut microbiota, and altered relative abundances of several taxa.

2017 ◽  
Vol 14 (2) ◽  
pp. 1 ◽  
Author(s):  
Noor Nasuha Abd Aziz ◽  
Siti Khairiyah Mohd Hatta ◽  
Idris Abd Ghani ◽  
Saiyid Jalaluddin Saiyid Shaifuddin

A study on abundance and diversity of Hymenoptera was conducted in Gunung Datuk, Rembau. Samplings were conducted from November 2014 to February 2015 using six Malaise traps. Three traps were placed at Site 1 at 700m height for high elevation and the remaining traps were placed at Site 2 at 200m height for low elevation. A total number of 221 Hymenopteran were collected which consist of nine families namely Ichneumonidae, Formicidae, Braconidae, Bethylidae, Evaniidae, Tiphiidae, Vespidae, Pompilidae and Apidae. In this study, 93 individuals were obtained from Site 1, comprising nine families and 43 morphospecies while 127 individuals were obtained from Site 2 with nine families and 45 morphospecies. Formicidae was the most dominant family collected from both sites with a total of 104 individuals while the least family recorded was Apidae with only one individual. Shannon’s Weiner Diversity Index (H’) showed Site 1 had the higher diversity value with H’ = 3.17 compared to Site 2 with value H’ = 3.12. For Evenness Index, Site 1 had higher value compared to Site 2 with E’ = 0.84 and E’ = 0.82 respectively. Moreover, for Margalef Richness Index, Site 1 recorded R’ = 9.24 while site two recorded R’ = 9.08 which concluded that Site 1 had higher species richness compared to Site 2. Paired t-test showed that both sites had no significant difference with p>0.05. Overall study showed that the diversity and abundance of Hymenoptera in Gunung Datuk were low since the value of H’ is less than 3.50.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Song ◽  
Li-Ying Sun ◽  
Zhi-Jun Zhu ◽  
Lin Wei ◽  
Wei Qu ◽  
...  

Background and AimsBiliary atresia (BA) is an idiopathic neonatal cholestasis and is the most common indication in pediatric liver transplantation (LT). Previous studies have suggested that the gut microbiota (GM) in BA is disordered. However, the effect of LT on gut dysbiosis in patients with BA has not yet been elucidated.MethodsPatients with BA (n = 16) and healthy controls (n = 10) were recruited. In the early life of children with BA, Kasai surgery is a typical procedure for restoring bile flow. According to whether BA patients had previously undergone Kasai surgery, we divided the post-LT patients into the with-Kasai group (n = 8) and non-Kasai group (n = 8). Fecal samples were collected in both the BA and the control group; among BA patients, samples were obtained again 6 months after LT. A total of 40 fecal samples were collected, of which 16 were pre-LT, 14 were post-LT (8 were with-Kasai, 6 were non-Kasai), and 10 were from the control group. Metagenomic sequencing was performed to evaluate the GM.ResultsThe Kruskal-Wallis test showed a statistically significant difference in the number of genes between the pre-LT and the control group, the pre-LT and the post-LT group (P < 0.05), but no statistical difference between the post-LT and the control group. Principal coordinate analysis also showed that the microbiome structure was similar between the post-LT and control group (P > 0.05). Analysis of the GM composition showed a significant decrease in Serratia, Enterobacter, Morganella, Skunalikevirus, and Phifllikevirus while short chain fatty acid (SCFA)-producing bacteria such as Roseburia, Blautia, Clostridium, Akkermansia, and Ruminococcus were increased after LT (linear discriminant analysis > 2, P < 0.05). However, they still did not reach the normal control level. Concerning functional profiles, lipopolysaccharide metabolism, multidrug resistance, polyamine biosynthesis, GABA biosynthesis, and EHEC/EPEC pathogenicity signature were more enriched in the post-LT group compared with the control group. Prior Kasai surgery had a specific influence on the postoperative GM.ConclusionLT partly improved the GM in patients with BA, which provided new insight into understanding the role of LT in BA.


2021 ◽  
Author(s):  
Lingxiong Chai ◽  
Qun Luo ◽  
Kedan Cai ◽  
Kaiyue Wang ◽  
Binbin Xu

Abstract Background: IgA nephropathy(IgAN)) is the common pathological type of glomerular diseases. The role of gut microbiota in mediating "gut-IgA nephropathy" has not received sufficient attention in the previous studies. The purpose of this study was to investigate the changes of fecal short-chain fatty acids(SCFAs), a metabolite of the intestinal microbiota, in patients with IgAN and its correlation with intestinal flora and clinical indicators, and to further investigate the role of the gut-renal axis in IgAN.Methods: There were 29 patients with IgAN and 29 normal control subjects recruited from January 2018 to May 2018. The fresh feces were collected. The fecal SCFAs were measured by gas chromatography/mass spectrometry and gut microbiota was analysed by16S rDNA sequences, followed by estimation of α- and β-diversity. Correlation analysis was performed using the spearman’s correlation test between SCFAs and gut microbiota. Results:The levels of acetic acid, propionic acid, butyric acid, isobutyric acid and caproic acid in the IgAN patients were significantly reduced compared with control group(P<0.05). Butyric acid(r=-0.336, P=0.010) and isobutyric acid(r=-0.298, P=0.022) were negatively correlated with urea acid; butyric acid(r=-0.316, P=0.016) was negatively correlated with urea nitrogen; caproic acid(r=-0.415,P=0.025) showed negative correlation with 24-h urine protein level.Exemplified by the results of α-diversity and β-diversity, the intestinal flora of IgAN patients was significantly different from that of the control group. Acetic acid was positively associated with c_Clostridia(r=0.357, P=0.008), o_Clostridiales(r=0.357, P=0.008) and g_Eubacterium_coprostanoligenes_group(r=0.283, P=0.036). Butyric acid was positively associated with g_Alistipes (r=0.278, P=0.040). The relative abundance of those were significantly decreased in IgAN group compared to control group.Conclusion: The levels of fecal SCFAs in the IgAN patients were reduced, and correlated with clinical parameters and gut microbiota, which may be involved in the pathogenesis of IgAN, and this finding may provide a new therapeutic approach.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Tian ◽  
Kai-yi Sun ◽  
Tian-qing Meng ◽  
Zhen Ye ◽  
Shi-meng Guo ◽  
...  

Coronavirus disease 2019 (COVID-19) has infected over 124 million people worldwide. In addition to the development of therapeutics and vaccines, the evaluation of the sequelae in recovered patients is also important. Recent studies have indicated that COVID-19 has the ability to infect intestinal tissues and to trigger alterations of the gut microbiota. However, whether these changes in gut microbiota persist into the recovery stage remains largely unknown. Here, we recruited seven healthy Chinese men and seven recovered COVID-19 male patients with an average of 3-months after discharge and analyzed their fecal samples by 16S rRNA sequencing analysis to identify the differences in gut microbiota. Our results suggested that the gut microbiota differed in male recovered patients compared with healthy controls, in which a significant difference in Chao index, Simpson index, and β-diversity was observed. And the relative abundance of several bacterial species differed clearly between two groups, characterized by enrichment of opportunistic pathogens and insufficiency of some anti-inflammatory bacteria in producing short chain fatty acids. The above findings provide preliminary clues supporting that the imbalanced gut microbiota may not be fully restored in recovered patients, highlighting the importance of continuous monitoring of gut health in people who have recovered from COVID-19.


2021 ◽  
Author(s):  
Rafig GURBANOV ◽  
Uygar KABAOĞLU ◽  
Tuba YAĞCI

Abstract Mammals have a symbiotic relationship with various microorganisms called microbiota throughout their lives. These microorganisms are known to affect the host's physiology, health, and even mental balance. In the harbor of the densest and most diverse microorganisms in mammals, the curved structure of the intestines and their rich nutrient content are effective. The development of the gut microbiota is regulated by a complex interaction between host and environmental factors, including diet and lifestyle. Herein, it is aimed to elucidate the changes in the gut microbiota of rats living in urban and rural habitats. All taxonomic changes in the gut microbiota of wild rats belonging to Rattus rattus species caught from urban and rural areas of Western Anatolian (Bilecik province) were examined comparatively by 16S rRNA next-generation sequencing technique. Laboratory rats were used as a control group for comparison. Thus, 2000 different bacterial species were identified in gut microbiota. According to the Shannon and Simpsons values ​​calculated, laboratory rats showed the highest species diversity. When the similarities of microbiota profiles were compared with the principal coordinate analysis (PcoA), bacterial populations showed variability among different habitats. The comparison of species richness between the groups with the species rarefaction technique revealed higher species richness in all wild rats, especially in the rural habitat, compared to laboratory rats. Food sources were determined as the most important factor contributing to species richness and diversity. While the increased food variety boosted species richness, species diversity was increased due to the diminished food variety.


2014 ◽  
Vol 5 (1) ◽  
pp. 33-43 ◽  
Author(s):  
M. Remely ◽  
E. Aumueller ◽  
D. Jahn ◽  
B. Hippe ◽  
H. Brath ◽  
...  

Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.


2020 ◽  
Author(s):  
Haoqing Shao ◽  
Chenyang Zhang ◽  
Nenqun Xiao ◽  
Zhoujin Tan

Abstract Background: Antibiotic-associated diarrhea (AAD), defined as diarrhea that occurs in association with the administration of antibiotics and without another clear etiology, is one of the most commonly adverse drug events of antibiotics therapy. We established a diarrhea model induced by gentamycin and cefradine to investigate the microbiota characteristics in the intestinal lumen of mice with AAD and provide insights into noteworthy bacteria related to gentamicin and cefradine-associated diarrhea.Results: The number of OTUs in the model group and the normal group was 983 and 2107, respectively, and 872 identical OTUs were shared between two groups. Species richness and species diversity of intestinal microbe were altered by antibiotics administration. The dominant phyla of AAD mice were Firmicutes (52.63%) and Proteobacteria (46.37%). The abundance of 8 genera, Ruminococcus, Blautia, Enterococcus, Eubacterium, Clostridium, Coprococcus, Aerococcus, and Pseudomonas, increased significantly, and the abundance of 3 genera, Prevotella, Bacteroides, and Adlercreutzia, decreased significantly in the model group compared to those in the control group (p < 0.05). LEfSe analysis showed that Enterococcus, Eubacterium, Ruminococcus, and Blautia were the key differential genera in the model group.Conclusions: The bacterial diversity of the intestinal lumen was diminished after gentamicin and cefradine administration. The alterations in the abundance and composition of gut microbiota further led to the dysfunction of gut microbiota. More specifically, gentamicin and cefradine significantly increased the abundance of the opportunistic pathogens, of which Enterococcus and Clostridium were the most prominent and most worthy of attention.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2097251
Author(s):  
Guiming Yan ◽  
Yuanqing Si ◽  
Jing Shao ◽  
Tianming Wang ◽  
Changzhong Wang ◽  
...  

Houttuynia drugs, including sodium houttuyfonate (SH) and sodium new houttuyfonate (SNH), are derivatives of the active ingredient of Houttuynia cordata, which can be used as both a vegetable and medicine in China. We aimed to explore the regulation effects of SH and SNH on the gut microbiota and production of inflammatory factors in mice. Here, we found that SH and SNH led to an increase in the production of interferon gamma and nuclear factor κ, and decreased the production of lipocalin-2 in the mice. The alpha diversity results of gut microbiota of the mice showed that the gut microbiota of the SH, SNH, and azithromycin treatment groups were significantly different from the control group, but the effects of reduced abundance and diversity of the SH and SNH groups were relatively lower than that of the azithromycin group. The beta diversity results indicated that the samples of each group were significantly grouped, and distribution of SH and SNH groups was more similar to the control group than the azithromycin group. Furthermore, SH and SNH groups had significant differences in the abundance of specific bacteria such as Escherichia–Shigella and Odoribacter, which might be associated with the increase of inflammatory factors. Therefore, our results suggested that SH and SNH may significantly affect the gut microbiota and production of inflammatory factors in the mice.


2018 ◽  
Vol 50 (09) ◽  
pp. 696-703 ◽  
Author(s):  
Qian Xing ◽  
Zhongyan Shan ◽  
Yun Gao ◽  
Jingyuan Mao ◽  
Xiu Liu ◽  
...  

AbstractTo investigate the mechanism responsible for the neurological alterations, miRNA expression profile and brain-derived neurotrophic factor (BDNF) were evaluated in brain tissues of fetal or neonatal rats and from maternal rats with hypothyroidism. Ninety female Wistar rats were divided into a control and a hypothyroid group, which were mated. Brain samples of the offspring were obtained at maternal embryonic day (E) E13 and E17 as well as postnatal day (P) P0 and P7, and the hippocampus and cortex were separated at P7. BDNF mRNA at E13 was tested by real-time PCR and protein expression by Western blot. Luciferase assays were used to confirm that miR-206 targets the 3′-untranslated region (3′-UTR) of BDNF. In the brain tissues of fetal and neonatal rats from maternal rats with hypothyroidism, differentiation miRNAs profile were found at E13, E17, P0, and P7. Compared with the control group, miR-206 levels in the hypothyroidism group were increased by 3.1-fold by micro-array, and were higher as measured by SYBR green real-time qRT–PCR (p<0.01). There was no significant difference in the BDNF mRNA levels at E13 between the hypothyroidism group and the control group (1.767±0.477 vs. 1.798±0.462, respectively; p>0.05), but pro-BDNF and mature BDNF protein levels in the hypothyroid group at E13 were significantly lower than those in the control group (p<0.05). miR-206 targeted 3′-UTR of BDNF. Our data highlight the role of miR-206 as a post-transcriptional inhibitor of BDNF at E13 in pregnant hypothyroid rats.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Kelsey Smith ◽  
Sarah Francisco ◽  
Ying Zhu ◽  
Kathryn Barger ◽  
Donald E Smith ◽  
...  

Abstract Objectives We sought to identify the role of gut microbiota in the previously discovered relationship between a high glycemic diet and the development of retinal damage and metabolic health outcomes in aged mice. Methods Male C57Bl6/J mice aged 12 months were fed equal amounts of a high glycemic (HG) or low glycemic (LG) diet for 12 months. The compositions of the diets were identical apart from the starch, which was 100% amylopectin in the HG diet and 30% amylopectin/70% amylose in the LG diet. Within each diet, mice were assigned to one of three treatment conditions: antibiotic ablation of gut microbiota (HGabx or LGabx), weekly fecal microbiota transplants (FMT) from donor control mice fed the alternate diet (HG[tLG] or LG[tHG]), or a control group. Mice were weighed weekly and feces and urine were collected at regular intervals for microbiome and metabolome analysis respectively. Mice underwent MRIs to determine body composition, intraperitoneal glucose tolerance tests to determine glycemic responses, and eye fundus imaging and fluorescein angiography to evaluate the health of the retina and retinal vasculature. Results Compared with LG-fed controls, the HG-fed controls had significantly increased body fat mass, decreased insulin sensitivity, and an increased prevalence of retinal damage including hypopigmentation and vascular tortuosity. There was no significant difference in body weight between the HGabx and LGabx group throughout the study. The LGabx group had a significantly higher body weight and the HGAbx had significantly lower body weight than their respective control groups throughout the study. The LGabx group had the highest prevalence of abnormal retinal findings. Survival was significantly decreased in the HGabx mice compared with mice of all other groups of mice, and most died suddenly and presented with an enlarged and hemorrhagic cecum. There was no significant effect of the FMT on body weight or body composition compared with the control mice. The HG[tLG] group had improved insulin sensitivity relative to the HG controls. Conclusions Gut microbiota mediate the relationship between the glycemic response to the diet and health outcomes such as obesity, insulin sensitivity, eye health, and survival. Funding Sources BrightFocus Foundation, USDA/NIFA AFRI grant 2015-05470, USDA contract 1950-510000-060-03A from ARS, Stanley N. Gershoff Scholarship.


Sign in / Sign up

Export Citation Format

Share Document