scholarly journals Gut Microbiota Manipulation in Mice Fed High or Low Glycemic Diets Affects Metabolic and Eye Health (P20-042-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Kelsey Smith ◽  
Sarah Francisco ◽  
Ying Zhu ◽  
Kathryn Barger ◽  
Donald E Smith ◽  
...  

Abstract Objectives We sought to identify the role of gut microbiota in the previously discovered relationship between a high glycemic diet and the development of retinal damage and metabolic health outcomes in aged mice. Methods Male C57Bl6/J mice aged 12 months were fed equal amounts of a high glycemic (HG) or low glycemic (LG) diet for 12 months. The compositions of the diets were identical apart from the starch, which was 100% amylopectin in the HG diet and 30% amylopectin/70% amylose in the LG diet. Within each diet, mice were assigned to one of three treatment conditions: antibiotic ablation of gut microbiota (HGabx or LGabx), weekly fecal microbiota transplants (FMT) from donor control mice fed the alternate diet (HG[tLG] or LG[tHG]), or a control group. Mice were weighed weekly and feces and urine were collected at regular intervals for microbiome and metabolome analysis respectively. Mice underwent MRIs to determine body composition, intraperitoneal glucose tolerance tests to determine glycemic responses, and eye fundus imaging and fluorescein angiography to evaluate the health of the retina and retinal vasculature. Results Compared with LG-fed controls, the HG-fed controls had significantly increased body fat mass, decreased insulin sensitivity, and an increased prevalence of retinal damage including hypopigmentation and vascular tortuosity. There was no significant difference in body weight between the HGabx and LGabx group throughout the study. The LGabx group had a significantly higher body weight and the HGAbx had significantly lower body weight than their respective control groups throughout the study. The LGabx group had the highest prevalence of abnormal retinal findings. Survival was significantly decreased in the HGabx mice compared with mice of all other groups of mice, and most died suddenly and presented with an enlarged and hemorrhagic cecum. There was no significant effect of the FMT on body weight or body composition compared with the control mice. The HG[tLG] group had improved insulin sensitivity relative to the HG controls. Conclusions Gut microbiota mediate the relationship between the glycemic response to the diet and health outcomes such as obesity, insulin sensitivity, eye health, and survival. Funding Sources BrightFocus Foundation, USDA/NIFA AFRI grant 2015-05470, USDA contract 1950-510000-060-03A from ARS, Stanley N. Gershoff Scholarship.

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2917
Author(s):  
Hana Kahleova ◽  
Emilie Rembert ◽  
Jihad Alwarith ◽  
Willy N. Yonas ◽  
Andrea Tura ◽  
...  

Diet modulates gut microbiota and plays an important role in human health. The aim of this study was to test the effect of a low-fat vegan diet on gut microbiota and its association with weight, body composition, and insulin resistance in overweight men and women. We enrolled 168 participants and randomly assigned them to a vegan (n = 84) or a control group (n = 84) for 16 weeks. Of these, 115 returned all gut microbiome samples. Gut microbiota composition was assessed using uBiome Explorer™ kits. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was quantified with the predicted clamp-derived insulin sensitivity index from a standard meal test. Repeated measure ANOVA was used for statistical analysis. Body weight decreased in the vegan group (treatment effect −5.9 kg [95% CI, −7.0 to −4.9 kg]; p < 0.001), mainly due to a reduction in fat mass (−3.9 kg [95% CI, −4.6 to −3.1 kg]; p < 0.001) and in visceral fat (−240 cm3 [95% CI, −345 to −135 kg]; p < 0.001). PREDIcted M, insulin sensitivity index (PREDIM) increased in the vegan group (treatment effect +0.83 [95% CI, +0.48 to +1.2]; p < 0.001). The relative abundance of Faecalibacterium prausnitzii increased in the vegan group (+5.1% [95% CI, +2.4 to +7.9%]; p < 0.001) and correlated negatively with changes in weight (r = −0.24; p = 0.01), fat mass (r = −0.22; p = 0.02), and visceral fat (r = −0.20; p = 0.03). The relative abundance of Bacteroides fragilis decreased in both groups, but less in the vegan group, making the treatment effect positive (+18.9% [95% CI, +14.2 to +23.7%]; p < 0.001), which correlated negatively with changes in weight (r = −0.44; p < 0.001), fat mass (r = −0.43; p < 0.001), and visceral fat (r = −0.28; p = 0.003) and positively with PREDIM (r = 0.36; p < 0.001), so a smaller reduction in Bacteroides fragilis was associated with a greater loss of body weight, fat mass, visceral fat, and a greater increase in insulin sensitivity. A low-fat vegan diet induced significant changes in gut microbiota, which were related to changes in weight, body composition, and insulin sensitivity in overweight adults, suggesting a potential use in clinical practice.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Elaine Wei-Yin Yu ◽  
Gao Liu ◽  
Petr Stastka ◽  
Michael Chadwick Cheney ◽  
Jasmin Mahabamunuge ◽  
...  

Abstract Background: There is intense interest about the therapeutic potential of altering gut microbiota to improve metabolism, based primarily on intriguing animal studies. One prior trial of fecal microbiota transplantation (FMT) in obese men found that improved metabolic response after FMT was predicted by low baseline microbiome diversity. In the current trial, we investigated the safety and efficacy of weekly oral FMT capsules to improve glycemic outcomes in obese adults, and also explored determinants of successful microbiome engraftment and metabolic improvement after FMT. Methods: FMT-TRIM was a double-blind randomized placebo-controlled pilot trial of weekly oral FMT vs placebo capsules for 6 weeks in 24 obese adults with mild-moderate insulin resistance. Each participant in the FMT arm received capsules derived from one of 4 metabolically healthy lean donors (BMI 18.5-23 kg/m2). The primary outcome was change in insulin sensitivity assessed by hyperinsulinemic euglycemic clamp at 0 and 6 weeks. Secondary outcomes included body weight, metabolic labs, and body composition assessed by DXA over 12 weeks. 16SV4 rRNA sequencing was performed to assess microbiome composition and engraftment. Post-hoc exploratory analyses investigated metabolic outcomes after stratification by baseline microbiome diversity. Results: FMT and placebo groups were well balanced in terms of age (mean±SD 40±9 yrs), BMI (40±6 kg/m2), sex (72% female), and baseline metabolic measures. During the study, there were no statistically significant differences in insulin sensitivity between the FMT and placebo groups (+5 ± 12% FMT vs -3 ± 32% placebo, mean percent difference 9%, 95% CI -5% to 28%; p=0.16). There was a minor improvement in HbA1c at 12 weeks after FMT as compared to placebo (mean difference -0.1, 95% CI -0.3-0.01), but no significant differences in other metabolic labs, body weight, or body composition. Microbial engraftment varied by donor but was present in most FMT recipients, with persistence of engrafting strains throughout the 12-week study. Subgroup analyses of subjects with low microbiome diversity at baseline (FMT n=4, placebo n=7) showed a relative benefit of FMT over placebo at 12 weeks for HbA1c (mean difference -0.2, 95% CI -0.4 to -0.01), total cholesterol (-22 mg/dL, 95% CI -40 to -4 mg/dL), and fasting glucose (-10 mg/dL, 95% CI -19 to -1 mg/dL). There were no significant differences in adverse events between FMT and placebo groups. Conclusion: Weekly administration of FMT capsules results in gut microbiota engraftment for at least 12 weeks but does not meaningfully alter human metabolism in an unselected population of obese adults. Future studies are needed to elucidate the role of baseline recipient microbial diversity and other factors on the impact of FMT.


Author(s):  
Qing Li ◽  
Bo Wang ◽  
Hong-Yi Qiu ◽  
Xiu-Juan Yan ◽  
Li Cheng ◽  
...  

BackgroundEvidence suggests that circadian rhythm disorder is associated with a variety of gastrointestinal diseases, and the circadian rhythm plays a key role in maintaining the homeostasis of intestinal flora. The underlying mechanisms are still not completely identified. This study was aimed to explore whether jet lag-caused circadian disruption influences gut microbiome and its metabolites.MethodsMice were synchronized with 12-h light/dark cycles (control group) or subjected to daily 8-h advance of the light/dark cycle for every 3 days (jet-lagged group). Four months later, fecal samples and jejunal contents were collected and analyzed by 16S rRNA gene sequencing. In addition, fecal samples were subjected to metabolome analysis with ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS).ResultsThe results of 16s rRNA sequencing showed that chronic jet lag led to decreased microbial abundance, richness, and diversity in both feces and jejunal contents. ANOSIM analysis revealed significant difference between control and jet-lagged groups. As the colonic microbiome, the abundance of Bacteroidetes phylum was significantly decreased and that of Actinobacteria phylum was increased in jet-lagged mice. Jet lag increased the ratio of Firmicutes to Bacteroidetes, an indicator for the imbalance of gut microbiota. Metabolome analysis of fecal samples showed that the levels of tryptophan and its derivatives were decreased in jet-lagged mice. In addition, fecal levels of secondary bile acids changed under jet lag conditions. Correlation analysis identified associations between tryptophan (and its derivatives) levels and colonic microbiota.ConclusionsThis study presents a comprehensive landscape of gut microbiota and its metabolites in mice subjected to chronic jet lag. The results suggest that circadian disruption may lead to changes in fecal and jejunal microbiota and fecal metabolites. Moreover, our results demonstrate a novel interplay between the gut microbiome and metabolome.


2009 ◽  
Vol 24 (4) ◽  
pp. 251-255 ◽  
Author(s):  
Honório Sampaio Menezes ◽  
Cláudio Galeano Zettler ◽  
Alice Calone ◽  
Jackson Borges Corrêa ◽  
Carla Bartuscheck ◽  
...  

PURPOSE: To compare body weight and length, heart weight and length, heart-to-body weight ratio, glycemia, and morphometric cellular data of offspring of diabetic rats (ODR) and of normal rats (control). METHODS: Diabetes was induced in 3 pregnant Wistar rats, bearing 30 rats, on the 11th day after conception by intraperitoneal injection of 50 mg/kg of streptozotocin. Six normal pregnant Wistar rats, bearing 50 rats, made up the control group. Morphometric data were obtained using a scale for the weight, length, heart and body measurements. Morphometric cellular data were obtained by a computer assisted method applied to the measurements of myocytes. Statistical analysis utilized Student's t-test, ANOVA and Levene test. RESULTS: Control offspring had greater mean body weight and length than offspring of diabetic rats (p < 0.001). Heart weight and length and heart-to-body ratios of newborn rats differed between groups at birth (p < 0.001), but showed no difference at 21 days. Mean nuclei area and perimetric value of the myocytes decrees throughout the first 21 days of life (p < 0.01) in the diabetic group. CONCLUSIONS: Heart hypertrophy on the offspring of diabetic rats at birth was demonstrated by the significant difference between the groups. After the eleventh day, no difference was found, which confirmed regression of cardiomegaly. The significant difference between the first and the 21th day of life, for nuclei area feature, demonstrate regression of cardiac hypertrophy in the offspring of diabetic rats.


2016 ◽  
Vol 36 (9) ◽  
pp. 901-909 ◽  
Author(s):  
D Sheela ◽  
R Vijayaraghavan ◽  
S Senthilkumar

Buprenorphine drug cartridge was made for autoinjector device for use in emergency and critical situations to reduce the morbidity and mortality. Water-filled cartridges were prepared and buprenorphine was injected aseptically in the cartridge, to make 0.05 and 0.10 mg/mL. Rats were injected intraperitoneally, buprenorphine (0.3 and 0.6 mg/kg), repeatedly with the autoinjector and compared with manual injection (7 days and 14 days) using various haematological and biochemical parameters. No significant change was observed in the body weight, organ to body weight ratio and haematological variables in any of the experimental groups compared with the control group. Except serum urea and aspartate aminotransferase, no significant change was observed in glucose, cholesterol, triglycerides, bilirubin, protein, albumin, creatinine, uric acid, alanine aminotransferase, gamma glutamyltransferase and alkaline phosphatase. The autoinjectors deliver the drugs with spray effect and force for faster absorption. In the present study, the autoinjector meant for intramuscular injection was injected intraperitoneally in rats, and the drug was delivered with force on the vital organs. No significant difference was observed in the autoinjector group compared to the manual group showing tolerability and safety of the buphrenorphine autoinjector. This study shows that buprenorphine autoinjector can be considered for further research work.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Song ◽  
Li-Ying Sun ◽  
Zhi-Jun Zhu ◽  
Lin Wei ◽  
Wei Qu ◽  
...  

Background and AimsBiliary atresia (BA) is an idiopathic neonatal cholestasis and is the most common indication in pediatric liver transplantation (LT). Previous studies have suggested that the gut microbiota (GM) in BA is disordered. However, the effect of LT on gut dysbiosis in patients with BA has not yet been elucidated.MethodsPatients with BA (n = 16) and healthy controls (n = 10) were recruited. In the early life of children with BA, Kasai surgery is a typical procedure for restoring bile flow. According to whether BA patients had previously undergone Kasai surgery, we divided the post-LT patients into the with-Kasai group (n = 8) and non-Kasai group (n = 8). Fecal samples were collected in both the BA and the control group; among BA patients, samples were obtained again 6 months after LT. A total of 40 fecal samples were collected, of which 16 were pre-LT, 14 were post-LT (8 were with-Kasai, 6 were non-Kasai), and 10 were from the control group. Metagenomic sequencing was performed to evaluate the GM.ResultsThe Kruskal-Wallis test showed a statistically significant difference in the number of genes between the pre-LT and the control group, the pre-LT and the post-LT group (P &lt; 0.05), but no statistical difference between the post-LT and the control group. Principal coordinate analysis also showed that the microbiome structure was similar between the post-LT and control group (P &gt; 0.05). Analysis of the GM composition showed a significant decrease in Serratia, Enterobacter, Morganella, Skunalikevirus, and Phifllikevirus while short chain fatty acid (SCFA)-producing bacteria such as Roseburia, Blautia, Clostridium, Akkermansia, and Ruminococcus were increased after LT (linear discriminant analysis &gt; 2, P &lt; 0.05). However, they still did not reach the normal control level. Concerning functional profiles, lipopolysaccharide metabolism, multidrug resistance, polyamine biosynthesis, GABA biosynthesis, and EHEC/EPEC pathogenicity signature were more enriched in the post-LT group compared with the control group. Prior Kasai surgery had a specific influence on the postoperative GM.ConclusionLT partly improved the GM in patients with BA, which provided new insight into understanding the role of LT in BA.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Komlan M. Dossou-Yovo ◽  
Aboudoulatif Diallo ◽  
Povi Lawson-Evi ◽  
Yendubé T. Kantati ◽  
Tchin Darré ◽  
...  

Background. Herbal medication is a worldwide and ancient practice, mostly in developing countries, where a large part of the population is involved in this practice. Hence, studies must be conducted to evaluate their safety and efficiency to avoid or prevent toxicological risks due to their usage. In Togo, Carissa spinarum is a medicinal plant belonging to Apocynaceae family, used as an aphrodisiac or to heal some ailments including malaria, sickle cell anemia, hypertension, pain, and asthma. Notwithstanding its several ethnomedicinal benefits, just a few toxicological data associated with its chronic use are available. Objective. Therefore, this study aims to assess the toxicity of an ethanolic root extract of Carissa spinarum in Wistar rats. Methods. The 90-day oral toxicity process following OECD TG 408 guidelines is used. Male Wistar rats received Carissa spinarum root hydroethanolic extract at 500 and 1000 mg/kg for 90 days by oral gavage. Body weight changes, hematological and blood biochemical parameters, organ weight changes, malondialdehyde as a lipoperoxidation marker expressed according to tissue proteins, and histopathology of vital organs were assessed. Results. No signs of toxicity or mortality were observed during the 90 days experiment. Hematological parameters have not shown any treatment-related abnormalities. According to biochemical parameters, an increase in the chloride ion level was observed at 1000 mg/kg p < 0.01 . There was no significant difference between the treated groups and the control group concerning the malondialdehyde concentration, body weight, and organ relative weight. No changes in necropsy and histopathology of vital organs associated with extract treatment were observed. Conclusion. The results indicated that an ethanolic root extract of Carissa spinarum does not cause adverse effects, which can lead to Wistar rats’ death after 90-day oral administration at 500 and 1000 mg.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Sun ◽  
Lei Li ◽  
Jiayu Song ◽  
Wei Mao ◽  
Kaihao Xiao ◽  
...  

Background: Accumulating evidence suggests a connection between the gut microbiota and neonatal diseases. Hypoxia may play an important role in the intestinal lesions in neonates.Objective: This study aims to determine whether the gut microbiota differs between intrauterine hypoxic rats and healthy controls and to identify the factors that influence the changes in the gut microbiota.Methods: We constructed an intrauterine hypoxia model in rats and collected the intestinal contents of intrauterine hypoxic newborn rats and normal newborn rats within 4 h and on the seventh day after birth. They were divided them into the intrauterine hypoxia first-day group (INH1), intrauterine hypoxia seventh-day group (INH7), normal first-day group (NOR1), and normal seventh-day group (NOR7). The contents of the intestines were sequenced with 16S rRNA sequencing, the sequencing results were analyzed for biological information, and the differences in the diversity, richness, and individual taxa among the groups were analyzed.Results: The abundance of the gut microbiota of neonatal rats with intrauterine hypoxia was higher than that of the control group rats. Intrauterine hypoxia altered the structural composition of the gut microbiota in neonatal rats. The INH1 group showed increased species richness, phylogenetic diversity, and β-diversity, and altered relative abundance in several taxa compared to those in the control group. The differences in the microbiota among the four groups were significantly higher than those within the group, and the differences in the abundance and diversity of the INH7 and NOR7 groups decreased after 7 days of suckling. Functional analysis based on the Cluster of Orthologous Groups (COG) suggested that 23 functional COG categories. There was no significant difference in the functional categories between the hypoxia group and the normal group.Conclusion: Intrauterine hypoxia changed the initial colonization of the gut microbiota in neonatal rats. It could increase the species richness and β-diversity of the gut microbiota, and altered relative abundances of several taxa.


2020 ◽  
Author(s):  
Melina Bellini ◽  
Michael Andrew Pest ◽  
Manuela Miranda Rodrigues ◽  
Ling Qin ◽  
Jae-Wook Jeong ◽  
...  

Abstract Background: Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the Epidermal Growth Factor Receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of articular cartilage and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. Methods: Utilizing knee joints from cartilage-specific Mig-6 overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density.Results: Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. Conclusion: Overexpression of Mig-6 in articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways is critical for joint homeostasis and might present a promising therapeutic target for OA.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaohui Guo ◽  
Yifan Xu ◽  
Hairong He ◽  
Hao Cai ◽  
Jianfen Zhang ◽  
...  

Meal replacement plans are effective tools for weight loss and improvement of various clinical characteristics but not sustainable due to the severe energy restriction. The aim of the study was to evaluate the impact of meal replacement, specifically 388 kcal in total energy, on body composition and metabolic parameters in individuals with overweight and obesity from a Chinese population. A parallel, randomized controlled trial was performed with 174 participants (ChiCTR-OOC-17012000). The intervention group (N=86) was provided with a dinner meal replacement, and the control group (N=88) continued their routine diet as before. Body composition and blood parameters were assessed at 0, 4, 8, and 12 weeks. A post hoc analysis (least significant difference (LSD) test), repeated measurements, and pairedT-test were used to compare each variable within and between groups. Significant (p<0.001) improvements in body composition components were observed among the intervention group, including body weight (−4.3 ± 3.3%), body mass index (−4.3 ± 3.3%), waist circumference (−4.3 ± 4.4%), fat-free mass (−1.8 ± 2.9%), and body fat mass (−5.3 ± 8.8%). Body composition improvements corresponded with significant metabolic improvements of blood glucose (−4.7 ± 9.8%). Further improvements in visceral fat area (−7.7 ± 10.1%), accompanying with improvements in systolic (−3.7 ± 6.9%) and diastolic (−5.3 ± 7.7%) blood pressure, were only found in male subjects. To conclude, meal replacement intake with 388 kcal in total energy at dinner time for 12 weeks contributed to improvement in body composition and clinically significant metabolic parameters in both male and female participants with overweight/obesity. Additionally, glucose and blood pressure reduction were gender-specific highlighting the importance of gender stratification for design of nutritional intervention studies for improvement of health.


Sign in / Sign up

Export Citation Format

Share Document