scholarly journals Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiwei Zhang ◽  
Zhipeng Qi ◽  
Wenjie Wang ◽  
Lei Wang ◽  
Fuliang Cao ◽  
...  

It has been reported that Celtis sinensis Pers. is employed as a folk medicine for the treatment of inflammatory diseases. But the mechanism supporting its use as anti-inflammatory remains unclear. To investigate the anti-inflammatory of Celtis sinensis Pers. ICR mice were provided Celtis sinensis Pers. leaf extract (CLE) at 100, 200 mg/kg after ginkgolic acids (GA) sensitization. Our data showed that CLE and the main flavonoid isovitexin in CLE could ameliorate GA-induced contact dermatitis in mice. Ear swelling, inflammatory cell infiltration and splenomegaly were inhibited significantly by isovitexin, while the weight loss of mice in the isovitexin-treated group was much better than that in the dexamethasone-treated group (positive control drug). It has been reported in previous research that GA-induced inflammation is closely related to the T cell response. Therefore, T cells were the focus of the anti-inflammatory effect of isovitexin in this paper. The in vivo results showed that isovitexin (10, 20 mg/kg) inhibited the expression of proinflammatory cytokines (TNF-α, IFN-γ, IL-2 and IL-17A) in lymph nodes, inhibited the secretion of cytokines into the serum from mice with contact dermatitis and promoted the expression of apoptosis-related proteins. In vitro, isovitexin also induced apoptosis and inhibited proinflammatory cytokine expression in Con A-activated T cells. Further study showed that the MAPK and STAT signaling pathways and the phosphorylation of SHP2 were inhibited by isovitexin. Both molecular docking and biological experiments indicated that SHP2 may be an anti-inflammatory target of isovitexin in T cells. Taken together, isovitexin can serve as a potential natural agent for the treatment or prevention of GA-induced inflammatory problems.

2021 ◽  
Author(s):  
yiwei zhang ◽  
zhipeng qi ◽  
wenjie wang ◽  
lei wang ◽  
Fuliang cao ◽  
...  

Abstract It has been reported that Celtis sinensis Pers. is employed as a folk medicine for the treatment of inflammation diseases. But the mechanism supporting its use as anti-inflammatory remain unclear. To investigate the anti-inflammatory of Celtis sinensis Pers. ICR mice were provided Celtis sinensis Pers. leaf extract (CLE) at 100, 200mg/kg after ginkgolic acids (GA) sensitization. Our data showed that CLE and the main flavonoid isovitexin in CLE could ameliorate GA-induced contact dermatitis in mice. Ear swelling, inflammatory cell infiltration and splenomegaly were inhibited significantly by isovitexin, while the weight loss of mice in the isovitexin-treated group was much better than that in the dexamethasone-treated group (positive control drug). It has been reported in previous research that GA-induced inflammation is closely related to the T cell response. Therefore, T cells were the focus of the anti-inflammatory effect of isovitexin in this paper. The in vivo results showed that isovitexin (10, 20mg/kg) inhibited the expression of proinflammatory cytokines (TNF-α, IFN-γ, IL-2 and IL-17A) in lymph nodes, inhibited the secretion of cytokines into the serum from mice with contact dermatitis and promoted the expression of apoptosis-related proteins. In vitro, isovitexin also induced apoptosis and proinflammatory cytokine expression in Con A-activated T cells. Further study showed that the MAPK and STAT signaling pathways and the phosphorylation of SHP2 were inhibited by isovitexin. Both molecular docking and biological experiments indicated that SHP2 may be an anti-inflammatory target of isovitexin in T cells. Taken together, isovitexin can serve as a potential natural agent for the treatment or prevention of GA-induced inflammatory problems.


2016 ◽  
Vol 15 (4) ◽  
pp. NP53-NP66 ◽  
Author(s):  
Nur Rizi Zamberi ◽  
Nadiah Abu ◽  
Nurul Elyani Mohamed ◽  
Noraini Nordin ◽  
Yeap Swee Keong ◽  
...  

Background. Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells. Methods. 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days. Results. Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water–treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water–treated group. Conclusions. Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment.


1998 ◽  
Vol 95 (7) ◽  
pp. 3810-3815 ◽  
Author(s):  
A. T. Vella ◽  
S. Dow ◽  
T. A. Potter ◽  
J. Kappler ◽  
P. Marrack
Keyword(s):  
T Cells ◽  

2021 ◽  
Vol 12 ◽  
Author(s):  
Manoj Patidar ◽  
Naveen Yadav ◽  
Sarat K. Dalai

IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Anna V Zetterqvist ◽  
Jenny Nilsson‐Öhman ◽  
Olga Kotova ◽  
Lisa M Nilsson‐Berglund ◽  
Sergio Frutos Garcia ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
JongBok Lee ◽  
Dilshad H. Khan ◽  
Rose Hurren ◽  
Mingjing Xu ◽  
Yoosu Na ◽  
...  

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent, Azacytidine, achieves complete response with or without count recovery in approximately 70% of treatment-naïve elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that Venetoclax directly activated T cells to increase their cytotoxicity against AML in vitro and in vivo. Venetoclax enhanced T cell effector function by increasing ROS generation through inhibition of respiratory chain supercomplexes formation. In addition, Azacytidine induced a viral-mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T-cell mediated cytotoxicity. Similar findings were seen in patients treated with Venetoclax as this treatment increased ROS generation and activated T cells. Collectively, this study demonstrates a new immune mediated mechanism of action for Venetoclax and Azacytidine in the treatment of AML and highlights a potential combination of Venetoclax and adoptive cell therapy for patients with AML.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Giovanni Cimmino ◽  
Giovanni Ciccarelli ◽  
Stefano Conte ◽  
Grazia Pellegrino ◽  
Luigi Insabato ◽  
...  

Background: Activation of T-cells plays an important role in the pathophysiology of acute coronary syndromes (ACS). We have previously shown that plaques from ACS patients are characterized by a selective oligoclonal expansion of T-cells, indicating a specific, antigen-mediated recruitment of T-cells within the unstable lesions. We have also previously reported that activated T-cells in vitro express functional Tissue Factor (TF) on their surface. At the moment, however it is not known whether expression of TF by T-cells may contribute to thrombus formation in vivo. Methods: Blood was collected from the aorta and the coronary sinus of 13 NSTEMI and 10 stable CAD patients. CD3+ cells were selectively isolated and TF gene expression (real time PCR)and protein levels (western blot) were evaluated. In additional 7 STEMI patients, thrombotic formation material was obtained from the occluded coronary artery by catheter aspiration during primary PCI. TF expression in CD3+ cells was evaluated by immunohistochemistry and confocal microscopy. Results: Transcardiac TF expression in CD3+ cells was significantly higher in NSTEMI patients as compared to CD3+ cells obtained from stable CAD patients. Interestingly, thrombi aspirated from STEMI patients resulted enriched in CD3+cells, which expressed TF on their surface as shown in the figure. Conclusions: Our data demonstrate that in patients with ACS, T-lymphocytes may express surface TF, thus contributing to the process of thrombus formation. This finding may shed new light into the pathophysiologyof ACS.


1996 ◽  
Vol 184 (2) ◽  
pp. 783-788 ◽  
Author(s):  
N J Karandikar ◽  
C L Vanderlugt ◽  
T L Walunas ◽  
S D Miller ◽  
J A Bluestone

CTLA-4, a CD28 homologue expressed on activated T cells, binds with high affinity to the CD28 ligands, B7-1 (CD80) and B7-2 (CD86). This study was designed to examine the role of CTLA-4 in regulating autoimmune disease. Murine relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) is a demyelinating disease mediated by PLP139-151-specific CD4+ T cells in SJL/J mice. Anti-CTLA-4 mAbs (or their F(ab) fragments) enhanced in vitro proliferation and pro-inflammatory cytokine production by PLP139-151-primed lymph node cells. Addition of either reagent to in vitro activation cultures potentiated the ability of T cells to adoptively transfer disease to naive recipients. In vivo administration of anti-CTLA-4 mAb to recipients of PLP139-151-specific T cells resulted in accelerated and exacerbated disease. Finally, anti-CTLA-4 treatment of mice during disease remission resulted in the exacerbation of relapses. Collectively, these results suggest that CTLA-4 mediates the downregulation of ongoing immune responses and plays a major role in regulating autoimmunity.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


Sign in / Sign up

Export Citation Format

Share Document